Line 11: Line 11:
 
| Linearity || <math>ax_{1}[n] + bx_{2}[n] → a\chi_{1}(\omega) + b\chi_{2}(\omega)</math> || Example
 
| Linearity || <math>ax_{1}[n] + bx_{2}[n] → a\chi_{1}(\omega) + b\chi_{2}(\omega)</math> || Example
 
|-
 
|-
| Time Shifting & Frequency Shifting || 1) x[n - n<sub>o</sub>] → e<sup>-jωn<sub>o</sub></sup>X(ω)<br />
+
| Time Shifting & Frequency Shifting || 1) <math>x[n - n_{o}] → e^{-j\omegan_{o}}\chi(\omega)</math><br />
2) e<sup>-jω<sub>o</sub>n</sup>x[n] → X[ω - ω<sub>o</sub>]<br />
+
2) <math>e^{-j/omega_{o}n}x[n] → \chi[\omega - \omega_{o}]</math><br />
 
|| Example
 
|| Example
 
|-
 
|-
| Conjugate & Conjugate Symmetry || x[n] → X<sup>*</sup>(-ω) || Example
+
| Conjugate & Conjugate Symmetry || x[n] → X<sup>*</sup>(-ω) || <math></math>
 
|-
 
|-
| Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || Example
+
| Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || <math></math>
 
|-
 
|-
| Convolution || <math>x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega)</math> || Example
+
| Convolution || <math>x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega)</math> || <math></math>
 
|-
 
|-
| Multiplication || Example || Example
+
| Multiplication || <math></math> || <math></math>
 
|-
 
|-
| Duality || Example || Example
+
| Duality || <math></math> || <math></math>
 
|-
 
|-
| Differentiation in Frequency || Example || Example
+
| Differentiation in Frequency || <math></math> || <math></math>
 
|}
 
|}

Revision as of 22:06, 18 March 2018

Discrete-Time Fourier Transform Properties with Proofs


Property Name Property Proof
Periodicity $ \chi(\omega + 2\pi) = \chi(\omega) $ Example
Linearity $ ax_{1}[n] + bx_{2}[n] → a\chi_{1}(\omega) + b\chi_{2}(\omega) $ Example
Time Shifting & Frequency Shifting 1) $ x[n - n_{o}] → e^{-j\omegan_{o}}\chi(\omega) $

2) $ e^{-j/omega_{o}n}x[n] → \chi[\omega - \omega_{o}] $

Example
Conjugate & Conjugate Symmetry x[n] → X*(-ω)
Parversal Relation $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $
Convolution $ x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega) $
Multiplication
Duality
Differentiation in Frequency

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang