Line 7: Line 7:
 
!Property Name!! Property !! Proof
 
!Property Name!! Property !! Proof
 
|-
 
|-
|Periodicity|| <math>\chi(\omega + 2\pi) = \chi(\omega)<\math> || Example
+
|Periodicity|| <math>\chi(\omega + 2\pi) = \chi(\omega)</math> || Example
 
|-
 
|-
 
| Linearity || <math>ax_{1}[n] + bx_{2}[n] → a\chi_{1}(\omega) + b\chi_{2}(\omega)</math> || Example
 
| Linearity || <math>ax_{1}[n] + bx_{2}[n] → a\chi_{1}(\omega) + b\chi_{2}(\omega)</math> || Example

Revision as of 22:00, 18 March 2018

Discrete-Time Fourier Transform Properties with Proofs


Property Name Property Proof
Periodicity $ \chi(\omega + 2\pi) = \chi(\omega) $ Example
Linearity $ ax_{1}[n] + bx_{2}[n] → a\chi_{1}(\omega) + b\chi_{2}(\omega) $ Example
Time Shifting & Frequency Shifting 1) x[n - no] → e-jωnoX(ω)

2) e-jωonx[n] → X[ω - ωo]

Example
Conjugate & Conjugate Symmetry x[n] → X*(-ω) Example
Parversal Relation $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $ Example
Convolution $ x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega) $ Example
Multiplication Example Example
Duality Example Example
Differentiation in Frequency Example Example

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn