Line 19: Line 19:
 
| Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || Example
 
| Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || Example
 
|-
 
|-
| Convolution || <math>x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega)<\math> || Example
+
| Convolution || <math>x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega)</math> || Example
 
|-
 
|-
 
| Multiplication || Example || Example
 
| Multiplication || Example || Example

Revision as of 21:55, 18 March 2018

Discrete-Time Fourier Transform Properties with Proofs


Property Name Property Proof
Periodicity Χ(ω + 2π) = Χ(ω) Example
Linearity ax1[n] + bx2[n] → aΧ1(ω) + bΧ2(ω) Example
Time Shifting & Frequency Shifting 1) x[n - no] → e-jωnoX(ω)

2) e-jωonx[n] → X[ω - ωo]

Example
Conjugate & Conjugate Symmetry x[n] → X*(-ω) Example
Parversal Relation $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $ Example
Convolution $ x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega) $ Example
Multiplication Example Example
Duality Example Example
Differentiation in Frequency Example Example

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett