Line 19: Line 19:
 
| Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || Example
 
| Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || Example
 
|-
 
|-
| Convolution || Example || Example
+
| Convolution || <math>x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega)<\math> || Example
 
|-
 
|-
 
| Multiplication || Example || Example
 
| Multiplication || Example || Example

Revision as of 21:54, 18 March 2018

Discrete-Time Fourier Transform Properties with Proofs


Property Name Property Proof
Periodicity Χ(ω + 2π) = Χ(ω) Example
Linearity ax1[n] + bx2[n] → aΧ1(ω) + bΧ2(ω) Example
Time Shifting & Frequency Shifting 1) x[n - no] → e-jωnoX(ω)

2) e-jωonx[n] → X[ω - ωo]

Example
Conjugate & Conjugate Symmetry x[n] → X*(-ω) Example
Parversal Relation $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $ Example
Convolution $ x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega)<\math> || Example |- | Multiplication || Example || Example |- | Duality || Example || Example |- | Differentiation in Frequency || Example || Example |} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal