Line 7: Line 7:
 
!Property Name!! Property !! Proof
 
!Property Name!! Property !! Proof
 
|-
 
|-
|Periodicity|| χ(ω + 2π) = χ(ω) || Example
+
|Periodicity|| Χ(ω + 2π) = Χ(ω) || Example
 
|-
 
|-
| Linearity || ax<sub>1</sub>[n] + bx<sub>2</sub>[n] → <sub>1</sub>(ω) + <sub>2</sub>(ω) || Example
+
| Linearity || ax<sub>1</sub>[n] + bx<sub>2</sub>[n] → <sub>1</sub>(ω) + <sub>2</sub>(ω) || Example
 
|-
 
|-
| Time Shifting & Frequency Shifting || 1)<br />
+
| Time Shifting & Frequency Shifting || 1) x[n - n<sub>o</sub>] → e<sup>-jωn<sub>o</sub></sup>X(ω)<br />
2) || Example
+
2) e<sup>-jω<sub>o</sub>n</sup>x[n] → X[ω - ω<sub>o</sub>]<br />
 +
|| Example
 
|-
 
|-
| Conjugate & Conjugate Symmetry || Example || Example
+
| Conjugate & Conjugate Symmetry || x[n] → X<sup>*</sup>(-ω) || Example
 
|-
 
|-
 
| Parversal Relation || Example || Example
 
| Parversal Relation || Example || Example

Revision as of 21:04, 18 March 2018

Discrete-Time Fourier Transform Properties with Proofs


Property Name Property Proof
Periodicity Χ(ω + 2π) = Χ(ω) Example
Linearity ax1[n] + bx2[n] → aΧ1(ω) + bΧ2(ω) Example
Time Shifting & Frequency Shifting 1) x[n - no] → e-jωnoX(ω)

2) e-jωonx[n] → X[ω - ωo]

Example
Conjugate & Conjugate Symmetry x[n] → X*(-ω) Example
Parversal Relation Example Example
Convolution Example Example
Multiplication Example Example
Duality Example Example
Differentiation in Frequency Example Example

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal