Line 25: | Line 25: | ||
'''<font size="4px"> 6.1 Equilibrium Point </font>''' | '''<font size="4px"> 6.1 Equilibrium Point </font>''' | ||
− | <font size="3px"> An equilibrium point is a constant solution to a differential equation. Hence, for an ODE system, an equilibrium point is going to be a solution of a pair of constants. Set all of the differential terms equal to <math>0</math> to find the equilibrium point.</font> | + | <font size="3px"> An equilibrium point is a constant solution to a differential equation. Hence, for an ODE system, an equilibrium point is going to be a solution of a pair of constants. Set all of the differential terms equal to <math>0</math> to find the equilibrium point. |
+ | |||
+ | In the example in 6.0, we set <math>\frac{dx}{dt}=\frac{dy}{dt}=0</math>, hence <math>x(1-2x-3y)=2y(3-x-2y)=0</math>. Solve this system of normal equations. | ||
+ | |||
+ | '''·''' When <math>x=2y=0</math>, then <math>x=y=0</math>. | ||
+ | |||
+ | '''·''' When <math>x=3-2x-2y=0</math>, then <math>x=0</math>, <math>y=\frac{3}{2}</math>. | ||
+ | |||
+ | '''·''' When <math>1-2x-3y=2y=0</math>, then <math>x=\frac{1}{2}</math>, <math>y=0</math>. | ||
+ | |||
+ | '''·''' When <math>1-2x-3y=3-x-2y=0</math>, then <math>x=-7</math>, <math>y=5</math>. | ||
+ | |||
+ | Hence, the equilibrium points of this nonlinear system are <math>(x=0,y=0)</math>, <math>(x=0,y=\frac{3}{2}</math>, <math>(x=\frac{1}{2},y=0)</math>, and <math>(x=-7,y=5)</math>. | ||
+ | </font> | ||
Revision as of 20:54, 20 November 2017
Non-Linear Systems of ODEs
6.0 Concept
Consider the system of ODEs in 4.0,
$ \frac{dx_1}{dt}=f_1(t,x_1,x_2,...x_n) $
$ \frac{dx_2}{dt}=f_2(t,x_1,x_2,...x_n) $
...
$ \frac{dx_n}{dt}=f_n(t,x_1,x_2,...x_n) $
When the $ n $ ODEs are not all linear, this is a nonlinear system of ODE. Consider an example,
$ \frac{dx}{dt}=x(1-2x-3y) $,
$ \frac{dy}{dt}=2y(3-x-2y) $.
In this tutorial, we will analyse this system in different aspects to build up a basic completed concept.
6.1 Equilibrium Point
An equilibrium point is a constant solution to a differential equation. Hence, for an ODE system, an equilibrium point is going to be a solution of a pair of constants. Set all of the differential terms equal to $ 0 $ to find the equilibrium point.
In the example in 6.0, we set $ \frac{dx}{dt}=\frac{dy}{dt}=0 $, hence $ x(1-2x-3y)=2y(3-x-2y)=0 $. Solve this system of normal equations.
· When $ x=2y=0 $, then $ x=y=0 $.
· When $ x=3-2x-2y=0 $, then $ x=0 $, $ y=\frac{3}{2} $.
· When $ 1-2x-3y=2y=0 $, then $ x=\frac{1}{2} $, $ y=0 $.
· When $ 1-2x-3y=3-x-2y=0 $, then $ x=-7 $, $ y=5 $.
Hence, the equilibrium points of this nonlinear system are $ (x=0,y=0) $, $ (x=0,y=\frac{3}{2} $, $ (x=\frac{1}{2},y=0) $, and $ (x=-7,y=5) $.
6.2 Non-Linear Non-Autonomous System
6.3 Exercises
6.4 References
Institute of Natural and Mathematical Science, Massey University. (2017). 160.204 Differential Equations I: Course materials. Auckland, New Zealand.
Robinson, J. C. (2003). An introduction to ordinary differential equations. New York, NY., USA: Cambridge University Press.