Line 9: Line 9:
 
''' <big><big><big> 3.1 Separable Equation </big></big></big> '''
 
''' <big><big><big> 3.1 Separable Equation </big></big></big> '''
  
<font size="3px"> The easiest method is to separate the variables. This method is to switch the variables to make the same variables on the same sides.  
+
<font size="3px"> The easiest method is to separate the variables. This method is switching the variables to make the same variable on the same side, in order to integral on both sides and solve out the function (solution).
 +
 
 +
For example, we want to solve the differential equation <math>\frac{dy}{dt}=-2yt</math>, where <math>y(0)=1</math>.
 +
 
 
  </font>
 
  </font>

Revision as of 20:55, 12 November 2017

Basic Methods to Solve 1st-Order ODEs

A slecture by Yijia Wen

3.0 Abstract

By now we have known what is a differential equation and how its solutions conduct. It's time to solve it, like plenty of linear equations we have done before.


3.1 Separable Equation

The easiest method is to separate the variables. This method is switching the variables to make the same variable on the same side, in order to integral on both sides and solve out the function (solution).

For example, we want to solve the differential equation $ \frac{dy}{dt}=-2yt $, where $ y(0)=1 $.


Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett