(Created page with "Category:ECE Category:QE Category:MN Category:problem solving Category:Dynamics <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Ex...") |
|||
Line 16: | Line 16: | ||
</font size> | </font size> | ||
− | August | + | August 2010 |
</center> | </center> | ||
---- | ---- | ||
---- | ---- | ||
==Questions== | ==Questions== | ||
− | All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/ | + | All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_10/MN-2%20QE%2010.pdf link] |
=Solutions of all questions= | =Solutions of all questions= | ||
− | + | Part A | |
− | + | a) <math>D_p\frac{d^2\triangle p}{dx^2} = 0</math> | |
− | + | b) <math>\triangle p = Ax +B</math> | |
− | + | c) <math>\triangle p(x_n) = \frac{n_i^2}{N_D}(e^{qV_A/kT}-1)</math> | |
+ | <math>\triangle p(w_N) = 0 | ||
+ | </math> | ||
− | + | d)<math>0=Aw_N+B</math> | |
− | + | <math> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
\begin{align*} | \begin{align*} | ||
− | \ | + | \frac{n_i^2}{N_D}(e^{qV_A/kT}-1)&=Ax_n+B\\ |
− | + | A(w_N+x_n)&=-\frac{n_i^2}{N_D}(e^{qV_A/kT}-1)\\ | |
− | &\ | + | \implies A&=-\frac{n_i^2}{N_D(w_N-x_n)}(e^{qV_A/kT}-1)\\ |
− | + | B=-Aw_N&=\frac{w_Nn_i^2}{N_D(w_N-x_n)}(e^{qV_A/kT}-1)\\ | |
− | &= | + | J_p = -qD_p\frac{d\triangle p}{dx}\bigg\vert_{x=x_n} &= -qD_p\bigg[-\frac{n_i^2}{N_D(w_N-x_n)}(e^{qV_A/kT}-1)\bigg]\\ |
+ | &=\frac{qD_p}{w_N-x_n}\frac{n_i^2}{N_D}(e^{qV_A/kT}-1) | ||
\end{align*} | \end{align*} | ||
</math> | </math> | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
− | + | Part B | |
+ | a) | ||
<math> | <math> | ||
\begin{align*} | \begin{align*} | ||
− | + | I_{La}&=qA\int_0^{x_n}\frac{dn}{dt}\cdot dx\\ | |
− | + | &=qAG_Lx_n | |
− | + | ||
− | & | + | |
\end{align*} | \end{align*} | ||
</math> | </math> | ||
− | + | <math> | |
− | + | \frac{dn}{dt} = -R=G_L | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</math> | </math> | ||
− | + | b) | |
<math> | <math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
\begin{align*} | \begin{align*} | ||
− | + | &D_p\frac{d^2\triangle p}{dx^2}+G_L =0\\ | |
− | + | &\implies \frac{d^2\triangle p}{dx^2} =-\frac{G_L}{D_p}\\ | |
− | + | &\implies \frac{d\triangle p}{dx} =-\frac{G_L}{D_p}x+A\\ | |
− | + | &\implies \triangle p =-\frac{G_L}{D_p}\frac{x^2}{2}+Ax+B\\ | |
− | + | &\triangle p(w_n) =0\\ | |
− | \ | + | &\triangle p(x_n) = \frac{n_i^2}{N_D}(e^{qV_A/kT}-1) (?)\\ |
− | + | &\text{or; }-D_p\frac{d\triangle p(x_n)}{dx}=G_Lx_n (?) | |
− | + | \end{align*} | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</math> | </math> | ||
− | + | which one to use?? | |
− | + | ||
− | + | ||
<math> | <math> | ||
− | + | I_{Lb} = -qAD_p\frac{d(\triangle p)}{dx} | |
</math> | </math> | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
− | |||
---- | ---- | ||
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] |
Latest revision as of 21:19, 5 August 2017
MICROELECTRONICS and NANOTECHNOLOGY (MN)
Question 2: Junction Devices
August 2010
Questions
All questions are in this link
Solutions of all questions
Part A a) $ D_p\frac{d^2\triangle p}{dx^2} = 0 $
b) $ \triangle p = Ax +B $
c) $ \triangle p(x_n) = \frac{n_i^2}{N_D}(e^{qV_A/kT}-1) $ $ \triangle p(w_N) = 0 $
d)$ 0=Aw_N+B $ $ \begin{align*} \frac{n_i^2}{N_D}(e^{qV_A/kT}-1)&=Ax_n+B\\ A(w_N+x_n)&=-\frac{n_i^2}{N_D}(e^{qV_A/kT}-1)\\ \implies A&=-\frac{n_i^2}{N_D(w_N-x_n)}(e^{qV_A/kT}-1)\\ B=-Aw_N&=\frac{w_Nn_i^2}{N_D(w_N-x_n)}(e^{qV_A/kT}-1)\\ J_p = -qD_p\frac{d\triangle p}{dx}\bigg\vert_{x=x_n} &= -qD_p\bigg[-\frac{n_i^2}{N_D(w_N-x_n)}(e^{qV_A/kT}-1)\bigg]\\ &=\frac{qD_p}{w_N-x_n}\frac{n_i^2}{N_D}(e^{qV_A/kT}-1) \end{align*} $
------------------------------------------------------------------------------------
Part B a) $ \begin{align*} I_{La}&=qA\int_0^{x_n}\frac{dn}{dt}\cdot dx\\ &=qAG_Lx_n \end{align*} $ $ \frac{dn}{dt} = -R=G_L $
b)
$ \begin{align*} &D_p\frac{d^2\triangle p}{dx^2}+G_L =0\\ &\implies \frac{d^2\triangle p}{dx^2} =-\frac{G_L}{D_p}\\ &\implies \frac{d\triangle p}{dx} =-\frac{G_L}{D_p}x+A\\ &\implies \triangle p =-\frac{G_L}{D_p}\frac{x^2}{2}+Ax+B\\ &\triangle p(w_n) =0\\ &\triangle p(x_n) = \frac{n_i^2}{N_D}(e^{qV_A/kT}-1) (?)\\ &\text{or; }-D_p\frac{d\triangle p(x_n)}{dx}=G_Lx_n (?) \end{align*} $
which one to use??
$ I_{Lb} = -qAD_p\frac{d(\triangle p)}{dx} $
------------------------------------------------------------------------------------