Line 25: Line 25:
 
=Solutions of all questions=
 
=Solutions of all questions=
  
1)
 
<math>
 
\begin{align*}
 
n& = \int_{E_c}^\infty D(E)f(E)dE\\
 
&=\int_{E_c}^\infty\frac{2(E - E_c)}{\pi\hslash^2V_F^2}\cdot\frac{1}{1+e^{(E-E_F)/kT}}dE
 
\end{align*}
 
</math>
 
 
  Let;
 
 
<math>
 
\begin{align*}
 
\eta &=\frac{E-E_c}{kT}\:\:\:\:\:\:\therefore dE = kTd\eta\\
 
\eta_c &=\frac{E_F-E_c}{kT}
 
\end{align*}
 
</math>
 
 
  <math>
 
\begin{align*}
 
n& = \frac{2}{\pi\hslash^2V_F^2}\cdot(kT)^2\int_0^\infty\frac{\eta d\eta}{1+e^{\eta-\eta_c}}\\
 
&=\frac{2(kT)^2}{\pi\hslash^2V_F^2}\cdot\cancelto{1!}{\Gamma 2}\cdot F_1(\eta_c)\\
 
&=\frac{2(kT)^2}{\pi\hslash^2V_F^2} F_1(\eta_c)\\
 
\end{align*}
 
</math>
 
 
  ------------------------------------------------------------------------------------
 
 
2)
 
 
At <math>T = 0\:\:\:\:\:f(E) = 1</math> for <math>E\le E_F</math>
 
 
<math>
 
\begin{align*}
 
\therefore n &=\int_{E_c}^{E_F}D(E)dE\\
 
&=\int_{E_c}^{E_F}\frac{2(E-E_c)}{\pi\hslash^2V_F^2}dE\\
 
&=\frac{2}{\pi\hslash^2V_F^2}\cdot\frac{(E-E_c)^2}{2}\bigg\vert_{E_c}^{E_F}\\
 
&=\frac{(E_F-E_c)^2}{\pi\hslash^2V_F^2}
 
\end{align*}
 
</math>
 
 
 
------------------------------------------------------------------------------------\\
 
3)
 
For Maxwell Boltzmann Statistics
 
<math>F_1(\eta_c)\to e^{\eta_c}</math>
 
 
if
 
 
<math>\eta_c\le-3</math>
 
 
<math>E_F-E_c\le-3kT</math>
 
 
<math>E_c-E_F\ge3kT</math>
 
 
<math>\therefore n = \frac{2(kT)^2}{\pi\hslash^2V_F^2}\cdot e^{(E_F-E_c)/kT}</math>
 
 
------------------------------------------------------------------------------------\\
 
4)
 
 
<math>\bar{u} = \frac{\int_{E_c}^\infty D(E)f(E)(E-E_c)dE}{\int_{E_c}^\infty D(E)f(E)dE}</math>
 
 
from (1);
 
<math>
 
\begin{align*}
 
\text{Denominator} &= \frac{2(kT)^2}{\pi\hslash^2V_F^2}F_1(\eta_c)\\
 
\text{Numerator} &= \int_{E_c}^\infty\frac{2(E-E_c)^2}{\pi\hslash^2V_F^2}\cdot\frac{1}{1+e^{(E-E_F)/kT}}dE\\
 
&=\frac{2}{\pi\hslash^2V_F^2}(kT)^3\int_0^\infty\frac{\eta^2d\eta}{1+e^{\eta-\eta_c}}\\
 
&=\frac{2(kT)^3}{\pi\hslash^2V_F^2}\cdot\cancelto{2!}{\Gamma 3}\cdot F_2(\eta_c)\\
 
&=\frac{4(kT)^3}{\pi\hslash^2V_F^2} F_2(\eta_c)
 
\end{align*}
 
</math>
 
 
<math>\therefore\bar{u} = 2kT\frac{F_2(\eta_c)}{F_1(\eta_c)}</math>
 
 
 
------------------------------------------------------------------------------------\\
 
5)
 
At <math>T=0</math>
 
 
<math>\bar{u} = \frac{\int_{E_c}^E D(E)(E-E_c)dE}{\int_{E_c}^{E_F} D(E)dE}</math>
 
 
<math>
 
\begin{align*}
 
n &= D(E)f(E)\\
 
&=\frac{\int(E-E_c)D(E)f(E)}{\int D(E)f(E)dE}
 
\end{align*}
 
</math>
 
 
<math>
 
\begin{align*}
 
\text{Denominator} &= \frac{(E_F-E_c)^2}{\pi\hslash^2V_F^2}\\
 
\text{Numerator} &= \int_{E_c}^{E_F}\frac{2(E-E_c)^2}{\pi\hslash^2V_F^2}dE\\
 
&=\frac{2}{\pi\hslash^2V_F}\cdot\frac{(E-E_c)^3}{3}\bigg\vert_{E_c}^{E_F}\\
 
&=\frac{2(E_F-E_c)^3}{3\pi\hslash^2V_F}
 
\end{align*}
 
</math>
 
 
<math>\therefore\bar{u} = \frac{2}{3}(E_F - E_c)</math>
 
 
 
------------------------------------------------------------------------------------\\
 
6)
 
For Maxwell-Boltzmann statistics
 
At <math>T=0</math>
 
 
<math>F_1(\eta_c) = F_2(\eta_c)\to e^{\eta_c}</math>
 
 
<math>\therefore \bar{u} = 2kT.</math>
 
 
------------------------------------------------------------------------------------\\
 
 
   
 
   
  

Revision as of 18:41, 30 July 2017


ECE Ph.D. Qualifying Exam

MICROELECTRONICS and NANOTECHNOLOGY (MN)

Question 1: Semiconductor Fundamentals

August 2007



Questions

All questions are in this link

Solutions of all questions


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett