(Created page with "Category:ECE Category:QE Category:MN Category:problem solving Category:Dynamics <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Ex...") |
|||
Line 25: | Line 25: | ||
=Solutions of all questions= | =Solutions of all questions= | ||
− | 1) | + | 1) |
− | + | <math> | |
− | + | \begin{align*} | |
− | + | n& = \int_{E_c}^\infty D(E)f(E)dE\\ | |
+ | &=\int_{E_c}^\infty\frac{2(E - E_c)}{\pi\hslash^2V_F^2}\cdot\frac{1}{1+e^{(E-E_F)/kT}}dE | ||
+ | \end{align*} | ||
+ | </math> | ||
+ | |||
+ | Let; | ||
+ | |||
+ | <math> | ||
+ | \begin{align*} | ||
+ | \eta &=\frac{E-E_c}{kT}\:\:\:\:\:\:\therefore dE = kTd\eta\\ | ||
+ | \eta_c &=\frac{E_F-E_c}{kT} | ||
+ | \end{align*} | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | \begin{align*} | ||
+ | n& = \frac{2}{\pi\hslash^2V_F^2}\cdot(kT)^2\int_0^\infty\frac{\eta d\eta}{1+e^{\eta-\eta_c}}\\ | ||
+ | &=\frac{2(kT)^2}{\pi\hslash^2V_F^2}\cdot\cancelto{1!}{\Gamma 2}\cdot F_1(\eta_c)\\ | ||
+ | &=\frac{2(kT)^2}{\pi\hslash^2V_F^2} F_1(\eta_c)\\ | ||
+ | \end{align*} | ||
+ | </math> | ||
+ | |||
+ | ------------------------------------------------------------------------------------ | ||
+ | |||
+ | 2) | ||
+ | |||
+ | At <math>T = 0\:\:\:\:\:f(E) = 1</math> for <math>E\le E_F</math> | ||
+ | |||
+ | <math> | ||
+ | \begin{align*} | ||
+ | \therefore n &=\int_{E_c}^{E_F}D(E)dE\\ | ||
+ | &=\int_{E_c}^{E_F}\frac{2(E-E_c)}{\pi\hslash^2V_F^2}dE\\ | ||
+ | &=\frac{2}{\pi\hslash^2V_F^2}\cdot\frac{(E-E_c)^2}{2}\bigg\vert_{E_c}^{E_F}\\ | ||
+ | &=\frac{(E_F-E_c)^2}{\pi\hslash^2V_F^2} | ||
+ | \end{align*} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | ------------------------------------------------------------------------------------\\ | ||
+ | 3) | ||
+ | For Maxwell Boltzmann Statistics | ||
+ | <math>F_1(\eta_c)\to e^{\eta_c}</math> | ||
+ | |||
+ | if | ||
+ | |||
+ | <math>\eta_c\le-3</math> | ||
+ | |||
+ | <math>E_F-E_c\le-3kT</math> | ||
+ | |||
+ | <math>E_c-E_F\ge3kT</math> | ||
+ | |||
+ | <math>\therefore n = \frac{2(kT)^2}{\pi\hslash^2V_F^2}\cdot e^{(E_F-E_c)/kT}</math> | ||
+ | |||
+ | ------------------------------------------------------------------------------------\\ | ||
+ | 4) | ||
+ | |||
+ | <math>\bar{u} = \frac{\int_{E_c}^\infty D(E)f(E)(E-E_c)dE}{\int_{E_c}^\infty D(E)f(E)dE}</math> | ||
+ | |||
+ | from (1); | ||
+ | <math> | ||
+ | \begin{align*} | ||
+ | \text{Denominator} &= \frac{2(kT)^2}{\pi\hslash^2V_F^2}F_1(\eta_c)\\ | ||
+ | \text{Numerator} &= \int_{E_c}^\infty\frac{2(E-E_c)^2}{\pi\hslash^2V_F^2}\cdot\frac{1}{1+e^{(E-E_F)/kT}}dE\\ | ||
+ | &=\frac{2}{\pi\hslash^2V_F^2}(kT)^3\int_0^\infty\frac{\eta^2d\eta}{1+e^{\eta-\eta_c}}\\ | ||
+ | &=\frac{2(kT)^3}{\pi\hslash^2V_F^2}\cdot\cancelto{2!}{\Gamma 3}\cdot F_2(\eta_c)\\ | ||
+ | &=\frac{4(kT)^3}{\pi\hslash^2V_F^2} F_2(\eta_c) | ||
+ | \end{align*} | ||
+ | </math> | ||
+ | |||
+ | <math>\therefore\bar{u} = 2kT\frac{F_2(\eta_c)}{F_1(\eta_c)}</math> | ||
+ | |||
+ | |||
+ | ------------------------------------------------------------------------------------\\ | ||
+ | 5) | ||
+ | At <math>T=0</math> | ||
+ | |||
+ | <math>\bar{u} = \frac{\int_{E_c}^E D(E)(E-E_c)dE}{\int_{E_c}^{E_F} D(E)dE}</math> | ||
+ | |||
+ | <math> | ||
+ | \begin{align*} | ||
+ | n &= D(E)f(E)\\ | ||
+ | &=\frac{\int(E-E_c)D(E)f(E)}{\int D(E)f(E)dE} | ||
+ | \end{align*} | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | \begin{align*} | ||
+ | \text{Denominator} &= \frac{(E_F-E_c)^2}{\pi\hslash^2V_F^2}\\ | ||
+ | \text{Numerator} &= \int_{E_c}^{E_F}\frac{2(E-E_c)^2}{\pi\hslash^2V_F^2}dE\\ | ||
+ | &=\frac{2}{\pi\hslash^2V_F}\cdot\frac{(E-E_c)^3}{3}\bigg\vert_{E_c}^{E_F}\\ | ||
+ | &=\frac{2(E_F-E_c)^3}{3\pi\hslash^2V_F} | ||
+ | \end{align*} | ||
+ | </math> | ||
+ | |||
+ | <math>\therefore\bar{u} = \frac{2}{3}(E_F - E_c)</math> | ||
+ | |||
+ | |||
+ | ------------------------------------------------------------------------------------\\ | ||
+ | 6) | ||
+ | For Maxwell-Boltzmann statistics | ||
+ | At <math>T=0</math> | ||
+ | |||
+ | <math>F_1(\eta_c) = F_2(\eta_c)\to e^{\eta_c}</math> | ||
+ | |||
+ | <math>\therefore \bar{u} = 2kT.</math> | ||
+ | |||
+ | ------------------------------------------------------------------------------------\\ | ||
Revision as of 18:01, 30 July 2017
MICROELECTRONICS and NANOTECHNOLOGY (MN)
Question 1: Semiconductor Fundamentals
August 2007
Questions
All questions are in this link
Solutions of all questions
1) $ \begin{align*} n& = \int_{E_c}^\infty D(E)f(E)dE\\ &=\int_{E_c}^\infty\frac{2(E - E_c)}{\pi\hslash^2V_F^2}\cdot\frac{1}{1+e^{(E-E_F)/kT}}dE \end{align*} $
Let;
$ \begin{align*} \eta &=\frac{E-E_c}{kT}\:\:\:\:\:\:\therefore dE = kTd\eta\\ \eta_c &=\frac{E_F-E_c}{kT} \end{align*} $
$ \begin{align*} n& = \frac{2}{\pi\hslash^2V_F^2}\cdot(kT)^2\int_0^\infty\frac{\eta d\eta}{1+e^{\eta-\eta_c}}\\ &=\frac{2(kT)^2}{\pi\hslash^2V_F^2}\cdot\cancelto{1!}{\Gamma 2}\cdot F_1(\eta_c)\\ &=\frac{2(kT)^2}{\pi\hslash^2V_F^2} F_1(\eta_c)\\ \end{align*} $
------------------------------------------------------------------------------------
2)
At $ T = 0\:\:\:\:\:f(E) = 1 $ for $ E\le E_F $
$ \begin{align*} \therefore n &=\int_{E_c}^{E_F}D(E)dE\\ &=\int_{E_c}^{E_F}\frac{2(E-E_c)}{\pi\hslash^2V_F^2}dE\\ &=\frac{2}{\pi\hslash^2V_F^2}\cdot\frac{(E-E_c)^2}{2}\bigg\vert_{E_c}^{E_F}\\ &=\frac{(E_F-E_c)^2}{\pi\hslash^2V_F^2} \end{align*} $
------------------------------------------------------------------------------------\\
3)
For Maxwell Boltzmann Statistics
$ F_1(\eta_c)\to e^{\eta_c} $
if
$ \eta_c\le-3 $
$ E_F-E_c\le-3kT $
$ E_c-E_F\ge3kT $
$ \therefore n = \frac{2(kT)^2}{\pi\hslash^2V_F^2}\cdot e^{(E_F-E_c)/kT} $
------------------------------------------------------------------------------------\\ 4)
$ \bar{u} = \frac{\int_{E_c}^\infty D(E)f(E)(E-E_c)dE}{\int_{E_c}^\infty D(E)f(E)dE} $
from (1);
$ \begin{align*} \text{Denominator} &= \frac{2(kT)^2}{\pi\hslash^2V_F^2}F_1(\eta_c)\\ \text{Numerator} &= \int_{E_c}^\infty\frac{2(E-E_c)^2}{\pi\hslash^2V_F^2}\cdot\frac{1}{1+e^{(E-E_F)/kT}}dE\\ &=\frac{2}{\pi\hslash^2V_F^2}(kT)^3\int_0^\infty\frac{\eta^2d\eta}{1+e^{\eta-\eta_c}}\\ &=\frac{2(kT)^3}{\pi\hslash^2V_F^2}\cdot\cancelto{2!}{\Gamma 3}\cdot F_2(\eta_c)\\ &=\frac{4(kT)^3}{\pi\hslash^2V_F^2} F_2(\eta_c) \end{align*} $
$ \therefore\bar{u} = 2kT\frac{F_2(\eta_c)}{F_1(\eta_c)} $
------------------------------------------------------------------------------------\\
5) At $ T=0 $
$ \bar{u} = \frac{\int_{E_c}^E D(E)(E-E_c)dE}{\int_{E_c}^{E_F} D(E)dE} $
$ \begin{align*} n &= D(E)f(E)\\ &=\frac{\int(E-E_c)D(E)f(E)}{\int D(E)f(E)dE} \end{align*} $
$ \begin{align*} \text{Denominator} &= \frac{(E_F-E_c)^2}{\pi\hslash^2V_F^2}\\ \text{Numerator} &= \int_{E_c}^{E_F}\frac{2(E-E_c)^2}{\pi\hslash^2V_F^2}dE\\ &=\frac{2}{\pi\hslash^2V_F}\cdot\frac{(E-E_c)^3}{3}\bigg\vert_{E_c}^{E_F}\\ &=\frac{2(E_F-E_c)^3}{3\pi\hslash^2V_F} \end{align*} $
$ \therefore\bar{u} = \frac{2}{3}(E_F - E_c) $
------------------------------------------------------------------------------------\\
6) For Maxwell-Boltzmann statistics At $ T=0 $
$ F_1(\eta_c) = F_2(\eta_c)\to e^{\eta_c} $
$ \therefore \bar{u} = 2kT. $
------------------------------------------------------------------------------------\\