(Created page with "Category:ECE Category:QE Category:CE Category:problem solving Category:algorithms <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying...")
 
Line 24: Line 24:
  
 
Then we have:
 
Then we have:
</math>T(2^m) =  2 T(2^{\frac{m}{2}}) + \log {2^m} = 2 T(2^{\frac{m}{2}}) + m</math>.  
+
<math>T(2^m) =  2 T(2^{\frac{m}{2}}) + \log {2^m} = 2 T(2^{\frac{m}{2}}) + m</math>.  
  
 
We denote the running time in terms of <math>m</math> is <math>S(m)</math>, so <math>S(m) = T(2^m)</math>, where <math>m = \log n</math>.
 
We denote the running time in terms of <math>m</math> is <math>S(m)</math>, so <math>S(m) = T(2^m)</math>, where <math>m = \log n</math>.

Revision as of 16:46, 20 July 2017


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2013


Solution 1

First, let us change the variable. Let $ n = 2^{m} $, so equivalently, we have $ m = \log_2 n $. Thus, $ \sqrt[]{n} = 2^{\frac{m}{2}} $.

Then we have: $ T(2^m) = 2 T(2^{\frac{m}{2}}) + \log {2^m} = 2 T(2^{\frac{m}{2}}) + m $.

We denote the running time in terms of $ m $ is $ S(m) $, so $ S(m) = T(2^m) $, where $ m = \log n $. so we have $ S(m) = 2S(\frac{m}{2})+ m $.

Now this recurrence can in in the form of $ T(m) = aT(\frac{m}{b})+ f(m) $, where $ a=2 $, $ b=2 $, and $ f(m)=m $.

$ f(m) = m = \Theta(n^{\log _{b}{a}}) = \Theta(n) $. So the second case of master's theorem applies, we have $ S(k) = \Theta(k^{\log _{b}{a}} \log k) = \Theta(k \log k) $.

Replace back with $ T(2^m) =S(m) $, and $ m = \log_2 n $, we have $ T(n) = \Theta((\log n) (\log \log n)) $.

For the given recurrence, we replace n with $ 2^m $ and denote the running time as $ S(m) $. Thus,we have $ S(m) = T(2^m) = 2 T(2^{\frac{m}{2}}) + m $

Back to QE CE question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett