Line 1: Line 1:
 
2)
 
2)
 +
 +
Biot-Savart:
  
 
<math>
 
<math>
 
\begin{equation*}
 
\begin{equation*}
\text{\underline{Biot-Savart}:} \qquad \qquad d\bar{H}=\frac{I(\bar{R})d\bar{l}\times(\bar{R}-\bar{R}')}{4\pi\abs{\bar{R}-\bar{R}'}^3}
+
d\bar{H}=\frac{I(\bar{R})d\bar{l}\times(\bar{R}-\bar{R}')}{4\pi|\bar{R}-\bar{R}'|^3}
 
\end{equation*}
 
\end{equation*}
 
</math>
 
</math>
Line 13: Line 15:
 
\bar{R}&= 0\hat{x}+0\hat{y}+0\hat{z}\\
 
\bar{R}&= 0\hat{x}+0\hat{y}+0\hat{z}\\
 
\bar{R}'&=y\hat{y}\\
 
\bar{R}'&=y\hat{y}\\
\abs{\bar{R}-\bar{R}'}&=y \\
+
|\bar{R}-\bar{R}'|&=y \\
 
d\bar{l}&= (dy)\hat{y}
 
d\bar{l}&= (dy)\hat{y}
 
\end{align*}
 
\end{align*}
Line 20: Line 22:
 
<math>
 
<math>
 
\begin{equation*}
 
\begin{equation*}
d\bar{H}=\frac{(Idy)\hat{y}\times(-y\hat{y})}{4\pi\abs{y}^3}=0 \longrightarrow \boxed{\bar{H}=0}
+
d\bar{H}=\frac{(Idy)\hat{y}\times(-y\hat{y})}{4\pi|y|^3}=0 \longrightarrow \boxed{\bar{H}=0}
 
\end{equation*}
 
\end{equation*}
 
</math>
 
</math>

Latest revision as of 18:44, 18 June 2017

2)

Biot-Savart:

$ \begin{equation*} d\bar{H}=\frac{I(\bar{R})d\bar{l}\times(\bar{R}-\bar{R}')}{4\pi|\bar{R}-\bar{R}'|^3} \end{equation*} $

Alt text

$ \begin{align*} \bar{R}&= 0\hat{x}+0\hat{y}+0\hat{z}\\ \bar{R}'&=y\hat{y}\\ |\bar{R}-\bar{R}'|&=y \\ d\bar{l}&= (dy)\hat{y} \end{align*} $

$ \begin{equation*} d\bar{H}=\frac{(Idy)\hat{y}\times(-y\hat{y})}{4\pi|y|^3}=0 \longrightarrow \boxed{\bar{H}=0} \end{equation*} $

$ \begin{align*} \text{\underline{Ampere}:}& & \nabla\times\bar{H}&=\bar{J} & &\longrightarrow& & \oint \bar{H}\cdot d\bar{l}&=I_{enc}\\ \text{at the origin:}& & I_{enc}&=0 & &\longrightarrow& & \boxed{\bar{H}=0} \end{align*} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn