(Created page with "2016 AC-2 P1. (a) <math> X=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=\begin{bmatrix} y \\ \dot{y} \end{bmatrix}</math> <math>\begin{cases} \dot{x}=\begin{bmatrix} \do...")
 
Line 68: Line 68:
  
 
<math>y[k]=\begin{bmatrix}
 
<math>y[k]=\begin{bmatrix}
 +
-1 & 1
 +
\end{bmatrix}x[k]</math>
 +
 +
let <math>x_[k]=\begin{bmatrix}
 +
a\\
 +
b
 +
\end{bmatrix} \quad y[0]=\begin{bmatrix}
 +
-1 & 1
 +
\end{bmatrix}\begin{bmatrix}
 +
a\\
 +
b
 +
\end{bmatrix}=1</math>
 +
 +
<math> -a+b=1</math>
 +
 +
<math>y[1]=\begin{bmatrix}
 
-1 & 1  
 
-1 & 1  
 
\end{bmatrix}x[1]=\begin{bmatrix}
 
\end{bmatrix}x[1]=\begin{bmatrix}
Line 75: Line 91:
 
-1 & 2   
 
-1 & 2   
 
\end{bmatrix}x[0]=0</math>
 
\end{bmatrix}x[0]=0</math>
 +
 +
<math>x[1]=Ax[0]</math>
 +
 +
<math>3a+2b=0</math>
 +
 +
<math>\therefore a=-\frac{2}{5} \quad b=\frac{3}{5}</math>
 +
 +
<math>x[0]=\begin{bmatrix}
 +
-\frac{2}{5}\\
 +
\frac{3}{5}
 +
\end{bmatrix}</math>
 +
 +
ii)<math>x[0]=\begin{bmatrix}
 +
a\\
 +
b
 +
\end{bmatrix}  \quad x[2]=Ax[1]=A^2x[0]</math>
 +
 +
<math>A^2=0 \quad x[2]=0</math>
 +
 +
<math>y[2]=[-1 \quad 1]\quad  x[2]=0 \quad  y[1]=[-1 \quad 1] \quad x[1]=1</math>
 +
 +
<math>[-1\quad 1]\quad \begin{bmatrix}
 +
2 &4\\
 +
-1&2
 +
\end{bmatrix}\quad\begin{bmatrix}
 +
a\\
 +
b
 +
\end{bmatrix}=1</math>
 +
 +
we only have -3a-2b=1,so we can't uniquely determine a,b.
 +
 +
P3  (a)<math>\lambda I-A=\begin{bmatrix}
 +
\lambda+2&-4\\
 +
1&\lambda-2
 +
\end{bmatrix}</math>
 +
 +
<math>\lambda_1=\lambda_2=0</math>
 +
 +
<math>\begin{bmatrix}
 +
-2-\lambda_1 & 4\\
 +
-1 & 2-\lambda_1
 +
\end{bmatrix}\begin{bmatrix}
 +
u_1 \\
 +
u_2
 +
\end{bmatrix}=\begin{bmatrix}
 +
0\\
 +
0
 +
\end{bmatrix}</math>
 +
 +
<math>\begin{cases}
 +
-2u_1-\lambda_1u_1+4u_2=0\\
 +
-u_1+2u_2-\lambda_1u_2=0
 +
\end{cases}</math>
 +
 +
<math>u_1=2u_2</math>
 +
 +
<math> \therefore eigenvector \begin{bmatrix}
 +
u_1\\
 +
u_2
 +
\end{bmatrix}=\begin{bmatrix}
 +
2\\
 +
1
 +
\end{bmatrix}</math>
 +
 +
<math>J=MAM^{-1}</math>
 +
 +
(b)<math>e^{At}=L^{-1}\begin{bmatrix}
 +
(SI-A)^{-1}
 +
\end{bmatrix}=L^{-1}\begin{bmatrix}
 +
\frac{s-2}{s^2} & \frac{4}{s^2} \\
 +
\frac{-1}{s^2} & \frac{s+2}{s^2}
 +
\end{bmatrix}</math>
 +
 +
<math>L^{-1}\begin{bmatrix}
 +
\frac{s-2}{s^2}
 +
\end{bmatrix}= L^{-1}\begin{bmatrix}
 +
\frac{1}{s}-\frac{2}{s^2}
 +
\end{bmatrix}=1-2t</math>
 +
 +
<math>L^{-1}\begin{bmatrix}
 +
\frac{4}{s^2}
 +
\end{bmatrix}=4t</math>
 +
 +
<math>L^{-1}\begin{bmatrix}
 +
\frac{-1}{s^2}
 +
\end{bmatrix}=-t</math>
 +
 +
<math>L^{-1}\begin{bmatrix}
 +
\frac{s+2}{s^2}
 +
\end{bmatrix}=L^{-1}\begin{bmatrix}
 +
\frac{1}{s}+\frac{2}{s^2}
 +
\end{bmatrix}=1+2t</math>
 +
 +
<math>e^{At}=\begin{bmatrix}
 +
1-2t & 4t\\
 +
-t & 1+2t
 +
\end{bmatrix}</math>
 +
 +
(c)T(s)=<math>C(SI-A)^{-1}B</math>
 +
 +
=<math>[-1 \quad 1] \quad
 +
\begin{bmatrix}
 +
\frac{s-2}{s^2} & \frac{4}{s^2} \\
 +
\frac{-1}{s^2} & \frac{s+2}{s^2}
 +
\end{bmatrix} \quad
 +
\begin{bmatrix}
 +
2\\
 +
1
 +
\end{bmatrix}</math>

Revision as of 04:41, 22 May 2017

2016 AC-2 P1. (a) $ X=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=\begin{bmatrix} y \\ \dot{y} \end{bmatrix} $

$ \begin{cases} \dot{x}=\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix}=\begin{bmatrix} x_2 \\ -2x_1 x_2-u x_1+2u \end{bmatrix}\\ y=x_1 \end{cases} $

(b) $ u \equiv 2 $

$ \dot{x} =\begin{bmatrix} x_2 \\ -2x_1 x_2-2x_1+4 \end{bmatrix}=\begin{bmatrix} x_2 \\ -2x_1 (x_2+1)+4 \end{bmatrix} $

let $ \begin{cases} -2x_1 (x_2+1)+4=0 \\ x_2=0 \end{cases} \Rightarrow \begin{cases} -2x_1 +4=0 \\ x_2=0 \end{cases} \Rightarrow \begin{cases} x_1=2 \\ x_2=0 \end{cases} $

$ \therefore The \; equilibrum\; point\; is \;x_e=\begin{bmatrix} 2 \\ 0 \end{bmatrix} $

(c) $ u \equiv 2 \quad x_e=\begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad let \;x=f(x) $

The Jacobin of $ \dot{x} $ is: $ \begin{align} Df(x)= \begin{bmatrix} 0 & 1 \\ -2x_1-2 & -2x_1 \end{bmatrix} \end{align} $

The linear dynamics around $ x_e $ is $ \frac{d}{dt}f(x)=\begin{bmatrix} 0 & 1 \\ -2 & -4 \end{bmatrix} f(x) $

which is stable, locally stable at $ x_e $.

P2. i) $ x[k+1]=A x[k] $

$ y[k]=\begin{bmatrix} -1 & 1 \end{bmatrix}x[k] $

let $ x_[k]=\begin{bmatrix} a\\ b \end{bmatrix} \quad y[0]=\begin{bmatrix} -1 & 1 \end{bmatrix}\begin{bmatrix} a\\ b \end{bmatrix}=1 $

$ -a+b=1 $

$ y[1]=\begin{bmatrix} -1 & 1 \end{bmatrix}x[1]=\begin{bmatrix} -1 & 1 \end{bmatrix}\begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix}x[0]=0 $

$ x[1]=Ax[0] $

$ 3a+2b=0 $

$ \therefore a=-\frac{2}{5} \quad b=\frac{3}{5} $

$ x[0]=\begin{bmatrix} -\frac{2}{5}\\ \frac{3}{5} \end{bmatrix} $

ii)$ x[0]=\begin{bmatrix} a\\ b \end{bmatrix} \quad x[2]=Ax[1]=A^2x[0] $

$ A^2=0 \quad x[2]=0 $

$ y[2]=[-1 \quad 1]\quad x[2]=0 \quad y[1]=[-1 \quad 1] \quad x[1]=1 $

$ [-1\quad 1]\quad \begin{bmatrix} 2 &4\\ -1&2 \end{bmatrix}\quad\begin{bmatrix} a\\ b \end{bmatrix}=1 $

we only have -3a-2b=1,so we can't uniquely determine a,b.

P3 (a)$ \lambda I-A=\begin{bmatrix} \lambda+2&-4\\ 1&\lambda-2 \end{bmatrix} $

$ \lambda_1=\lambda_2=0 $

$ \begin{bmatrix} -2-\lambda_1 & 4\\ -1 & 2-\lambda_1 \end{bmatrix}\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix} $

$ \begin{cases} -2u_1-\lambda_1u_1+4u_2=0\\ -u_1+2u_2-\lambda_1u_2=0 \end{cases} $

$ u_1=2u_2 $

$ \therefore eigenvector \begin{bmatrix} u_1\\ u_2 \end{bmatrix}=\begin{bmatrix} 2\\ 1 \end{bmatrix} $

$ J=MAM^{-1} $

(b)$ e^{At}=L^{-1}\begin{bmatrix} (SI-A)^{-1} \end{bmatrix}=L^{-1}\begin{bmatrix} \frac{s-2}{s^2} & \frac{4}{s^2} \\ \frac{-1}{s^2} & \frac{s+2}{s^2} \end{bmatrix} $

$ L^{-1}\begin{bmatrix} \frac{s-2}{s^2} \end{bmatrix}= L^{-1}\begin{bmatrix} \frac{1}{s}-\frac{2}{s^2} \end{bmatrix}=1-2t $

$ L^{-1}\begin{bmatrix} \frac{4}{s^2} \end{bmatrix}=4t $

$ L^{-1}\begin{bmatrix} \frac{-1}{s^2} \end{bmatrix}=-t $

$ L^{-1}\begin{bmatrix} \frac{s+2}{s^2} \end{bmatrix}=L^{-1}\begin{bmatrix} \frac{1}{s}+\frac{2}{s^2} \end{bmatrix}=1+2t $

$ e^{At}=\begin{bmatrix} 1-2t & 4t\\ -t & 1+2t \end{bmatrix} $

(c)T(s)=$ C(SI-A)^{-1}B $

=$ [-1 \quad 1] \quad \begin{bmatrix} \frac{s-2}{s^2} & \frac{4}{s^2} \\ \frac{-1}{s^2} & \frac{s+2}{s^2} \end{bmatrix} \quad \begin{bmatrix} 2\\ 1 \end{bmatrix} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett