Line 55: Line 55:
  
 
<math>e^A=\begin{bmatrix}
 
<math>e^A=\begin{bmatrix}
e^-1     & 0    \\
+
e^{-1}    & 0    \\
0      &  e^-1  
+
0      &  e^{-1}
 
\end{bmatrix}\begin{bmatrix}
 
\end{bmatrix}\begin{bmatrix}
 
1      & 1    \\
 
1      & 1    \\
 
-1      & 1  
 
-1      & 1  
 
\end{bmatrix}\begin{bmatrix}
 
\end{bmatrix}\begin{bmatrix}
e^-\frac{1}{2}      & 0    \\
+
e^{-\frac{1}{2}}      & 0    \\
 
0      &  e^\frac{1}{2}  
 
0      &  e^\frac{1}{2}  
 
\end{bmatrix}\begin{bmatrix}
 
\end{bmatrix}\begin{bmatrix}
Line 67: Line 67:
 
\frac{1}{2}      &  \frac{1}{2}  
 
\frac{1}{2}      &  \frac{1}{2}  
 
\end{bmatrix}=\frac{1}{2}\begin{bmatrix}
 
\end{bmatrix}=\frac{1}{2}\begin{bmatrix}
e^-\frac{3}{2}+e^-\frac{1}{2}      & -e^-\frac-{3}{2}+e^-\frac{1}{2}    \\
+
e^{-\frac{3}{2}}+e^{-\frac{1}{2}}      & -e^{-\frac{3}{2}}+e^{-\frac{1}{2}}    \\
-e^-\frac-{3}{2}+e^-\frac{1}{2}      &  e^-\frac{3}{2}+e^-\frac{1}{2}
+
-e^{-\frac{3}{2}}+e^{-\frac{1}{2}}      &  e^{-\frac{3}{2}}+e^{-\frac{1}{2}}
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>

Revision as of 02:03, 21 May 2017

AC-2 2014

P1. (a)i) $ \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix}=\begin{bmatrix} -1 &-\frac{1}{2}\\ \frac{1}{2} & -1 \end{bmatrix}\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}+\begin{bmatrix} \frac{x_0(t)}{2}\\ \frac{x_3(t)}{2} \end{bmatrix}=\begin{bmatrix} -1 &-\frac{1}{2}\\ \frac{1}{2} & -1 \end{bmatrix}\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}+begin{bmatrix} \frac{1}{2}&0 \\ 0& \frac{1}{2} \end{bmatrix}\begin{bmatrix} x_0(t) \\ x_3(t) \end{bmatrix} $

ii) $ A=\begin{bmatrix} -1 & \frac{1}{2} \\ \frac{1}{2} & -1 \end{bmatrix}=\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}+\begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix}=\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}+\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} $


$ e^A=\begin{bmatrix} e^{-1} & 0 \\ 0 & e^{-1} \end{bmatrix}\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} e^{-\frac{1}{2}} & 0 \\ 0 & e^\frac{1}{2} \end{bmatrix}\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}=\frac{1}{2}\begin{bmatrix} e^{-\frac{3}{2}}+e^{-\frac{1}{2}} & -e^{-\frac{3}{2}}+e^{-\frac{1}{2}} \\ -e^{-\frac{3}{2}}+e^{-\frac{1}{2}} & e^{-\frac{3}{2}}+e^{-\frac{1}{2}} \end{bmatrix} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang