Line 27: | Line 27: | ||
1 \\ | 1 \\ | ||
-3 | -3 | ||
− | \end{bmatrix} | + | \end{bmatrix} </math> |
+ | |||
+ | <math>\mathbf{c)} \qquad \lambda I-A=\begin{vmatrix} | ||
+ | \lambda-2 & -1 \\ | ||
+ | 0 & \lambda+1 | ||
+ | |||
+ | \end{vmatrix} \qquad (\lambda-2)(\lambda+1)=0 \qquad \lambda1=2 \qquad \lambda2=-1 \\</math> | ||
+ | |||
+ | <math>\lambda=2 \qquad \begin{bmatrix} | ||
+ | 0 & -1 & 1 \\ | ||
+ | 0 & 3 &-3 | ||
+ | \end{bmatrix} \\ | ||
+ | rank<2 \qquad associated \qquad with \\ | ||
+ | \qquad \qquad \lambda=2>0 \\ </math> | ||
+ | |||
+ | <math>\Rightarrow \qquad not \qquad stablizable \\</math> | ||
+ | |||
+ | <math>\mathbf{d)} \qquad \lambda=-1 \qquad \begin{vmatrix} | ||
+ | -3 & -1 & 1 \\ | ||
+ | 0 & 0 & -3 | ||
+ | \end{vmatrix} \qquad rank=2 \\ </math> | ||
+ | |||
+ | <math>\Rightarrow \qquad \lambda=2 \qquad has \qquad to \qquad be \qquad eigeavalue </math> | ||
+ | |||
+ | <math>\Rightarrow \qquad \begin{bmatrix} | ||
+ | 1 & -1 | ||
+ | \end{bmatrix} can \qquad not \qquad be \qquad eigeavalues </math> |
Revision as of 20:43, 19 May 2017
AC-2 2011
P1.
$ \mathbf{a)} \qquad C=\begin{bmatrix} B & AB\end{bmatrix}=\begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} $
$ \Rightarrow \qquad Not \quad controllable. \qquad Subspace \begin{bmatrix} 1 \\ -3 \end{bmatrix} $
$ \mathbf{b)} \qquad 0=\begin{bmatrix} C \\ CA \end{bmatrix}=\begin{bmatrix} 3 & 1 \\ 6 & 2 \end{bmatrix} $
Not observable.
$ 3x_1+r=0 \qquad x_1=-\frac{1}{3}r \qquad span \begin{bmatrix} 1 \\ -3 \end{bmatrix} $
$ \mathbf{c)} \qquad \lambda I-A=\begin{vmatrix} \lambda-2 & -1 \\ 0 & \lambda+1 \end{vmatrix} \qquad (\lambda-2)(\lambda+1)=0 \qquad \lambda1=2 \qquad \lambda2=-1 \\ $
$ \lambda=2 \qquad \begin{bmatrix} 0 & -1 & 1 \\ 0 & 3 &-3 \end{bmatrix} \\ rank<2 \qquad associated \qquad with \\ \qquad \qquad \lambda=2>0 \\ $
$ \Rightarrow \qquad not \qquad stablizable \\ $
$ \mathbf{d)} \qquad \lambda=-1 \qquad \begin{vmatrix} -3 & -1 & 1 \\ 0 & 0 & -3 \end{vmatrix} \qquad rank=2 \\ $
$ \Rightarrow \qquad \lambda=2 \qquad has \qquad to \qquad be \qquad eigeavalue $
$ \Rightarrow \qquad \begin{bmatrix} 1 & -1 \end{bmatrix} can \qquad not \qquad be \qquad eigeavalues $