Line 13: Line 13:
  
 
a) <math>E\left[Y_x\right] = \lambda_x</math>
 
a) <math>E\left[Y_x\right] = \lambda_x</math>
 +
 +
<span style="color:green"> Lack of proof. Should mention the property of Poisson distribution to show the equivalence. See the proof in solution 2.</span>
  
 
b) Because the rate of absorption is proportional to the number of photons and the density of the material, so the attenuation of photons obeys the following equation
 
b) Because the rate of absorption is proportional to the number of photons and the density of the material, so the attenuation of photons obeys the following equation
Line 36: Line 38:
 
== Solution 2: ==
 
== Solution 2: ==
  
a) <math>
+
a). As we know <math>P\left\{Y_x=k\right\} = \frac{e^{-\lambda_x}\lambda_x^k}{k!}</math> is a Potion distribution, it is known that the expectation of a Poisson RV is <math>\lambda_x</math>.
\frac{R}{255}^\alpha=r_{linear}\\
+
  
\Rightarrow
+
Proof:  
\gamma=log_{\frac{R}{255}}{(R^{\alpha})}=\frac{ln{(R^{\alpha})}}{ln{\frac{R}{255}}}=\frac{\alpha{ln{R}}}{ln{R}-ln{255}}
+
</math>
+
 
+
<span style="color:green"> <math>\gamma </math> should be 1. </span>
+
 
+
b)
+
  
 
<math>
 
<math>
P_r=
+
\begin{split}
\left( \begin{array}{ccc}
+
E[Y_x] &= \sum^{+ \infty}_{k > 0} k \frac{e^{-\lambda_x}\lambda_x^k}{k!}\\
a & b & c \\
+
&= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^k}{(k-1)!}\\
d & e & f \\
+
&= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^^{k-1}}{(k-1)!}\lambda_x\\
g & h & i \end{array} \right)
+
&= \lambda_xe^{-\lambda_x}\sum^{+ \infty}_{k = 1} \frac{\lambda_x^k}{k!}\\
\left( \begin{array}{ccc}
+
&= \lambda_xe^{-\lambda_x}e^{\lambda_x}\\
1 \\
+
&= \lambda_x\\
0 \\
+
\end{split}
0 \end{array} \right)
+
<\math>
=
+
\left( \begin{array}{ccc}
+
a \\
+
d \\
+
g \end{array} \right) 
+
\\
+
\Rightarrow
+
x_r=\frac{a}{a+d+g}
+
,
+
y_r=\frac{d}{a+d+g}
+
\\
+
P_g=
+
\left( \begin{array}{ccc}
+
a & b & c \\
+
d & e & f \\
+
g & h & i \end{array} \right)
+
\left( \begin{array}{ccc}
+
0 \\
+
1 \\
+
0 \end{array} \right)  
+
=
+
\left( \begin{array}{ccc}
+
b \\
+
e \\
+
h \end{array} \right) 
+
 
+
\\
+
\Rightarrow
+
x_g=\frac{b}{b+e+h}
+
 
+
,
+
y_g=\frac{e}{b+e+h}
+
\\
+
 
+
P_b=
+
\left( \begin{array}{ccc}
+
a & b & c \\
+
d & e & f \\
+
g & h & i \end{array} \right) 
+
\left( \begin{array}{ccc}
+
0 \\
+
0 \\
+
1\end{array} \right)
+
=
+
\left( \begin{array}{ccc}
+
c \\
+
f \\
+
i \end{array} \right)  \\
+
\Rightarrow
+
x_g=\frac{c}{c+f+i}
+
,
+
y_g=\frac{f}{c+f+i}
+
</math>
+
 
+
c)
+
 
+
<math>
+
W=
+
\left( \begin{array}{ccc}
+
a & b & c \\
+
d & e & f \\
+
g & h & i \end{array} \right) 
+
\left( \begin{array}{ccc}
+
1 \\
+
1 \\
+
1\end{array} \right) 
+
=
+
\left( \begin{array}{ccc}
+
a+b+c \\
+
d+e+f \\
+
g+h+i \end{array} \right) 
+
\\
+
 
+
\Rightarrow
+
x_g=\frac{a+b+c}{a+b+c+d+e+f+g+h+i}
+
,
+
y_g=\frac{d+e+f}{a+b+c+d+e+f+g+h+i}
+
</math>
+
 
+
d)
+
[[ Image:Pro1_2015_Aug.PNG ]]<br />
+
 
+
e) Gamma correction a quantization will create an effect of dynamic range compression for pixels with small values. This will create dark block of shadings in a gradient region instead of a smooth transition.
+
  
 
----
 
----
[[ECE-QE_CS5-2015|Back to QE CS question 1, August 2013]]
+
[[ECE-QE_CS5-2014|Back to QE CS question 1, August 2014]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]:
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]:

Revision as of 15:08, 18 May 2017


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

August 2014, Problem 1

Problem 1 , 2

Solution 1

a) $ E\left[Y_x\right] = \lambda_x $

Lack of proof. Should mention the property of Poisson distribution to show the equivalence. See the proof in solution 2.

b) Because the rate of absorption is proportional to the number of photons and the density of the material, so the attenuation of photons obeys the following equation

$ \frac{d\lambda_x}{dx} = -\mu(x)\lambda_x $

c) Solve the differential equation in b), we have

$ \lambda_x = \lambda_0e^{-\int^x_0\mu(t)dt} $

d) So the integral of the density, $ \int^T_0\mu(x)dx $ can be written as $ \int^T_0\mu(x)dx = -\log\left(\frac{\lambda_T}{\lambda_0}\right) $


e) $ \int^T_ \mu(x)dx \simeq -\log \left( \frac{Y_T}{Y_0} \right) $

Solution 2:

a). As we know $ P\left\{Y_x=k\right\} = \frac{e^{-\lambda_x}\lambda_x^k}{k!} $ is a Potion distribution, it is known that the expectation of a Poisson RV is $ \lambda_x $.

Proof:

$ \begin{split} E[Y_x] &= \sum^{+ \infty}_{k > 0} k \frac{e^{-\lambda_x}\lambda_x^k}{k!}\\ &= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^k}{(k-1)!}\\ &= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^^{k-1}}{(k-1)!}\lambda_x\\ &= \lambda_xe^{-\lambda_x}\sum^{+ \infty}_{k = 1} \frac{\lambda_x^k}{k!}\\ &= \lambda_xe^{-\lambda_x}e^{\lambda_x}\\ &= \lambda_x\\ \end{split} <\math> ---- [[ECE-QE_CS5-2014|Back to QE CS question 1, August 2014]] [[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]: $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett