Line 70: Line 70:
 
</math>
 
</math>
  
 
+
<span style="color:green"> Multiple steps are skipped in this solution, which are necessary for clarity.  </span>
<span style="color:green"> The solution used <math> v </math> and <math>\mu</math> to represent frequency axis. It used <math> w</math> to subuslitude  both <math> v </math> and <math>\mu</math> which is confusing. The solution should stated let <math> w=v </math> and <math> w=\mu </math> at (a) and (b)</span><br>
+
 
+
<span style="color:green"> To be consistent with the problem statement, frequency notation<math>\mu</math> corresponds to the spatial notation <math>m </math> and is the first parameter. As a result, the solution of the (a) and (b) can be switched. </span>
+
  
 
c)  
 
c)  
Line 91: Line 88:
 
- Could reconstruct a very simple object, like triangle.
 
- Could reconstruct a very simple object, like triangle.
 
[[File:sol2_2013_1d_2.jpg|thumbnail|center]]
 
[[File:sol2_2013_1d_2.jpg|thumbnail|center]]
 +
 +
<span style="color:green"> The question asks a counter example if &nbsp;<span class="texhtml">''p''<sub>0</sub>(''n'')</span>&nbsp;and&nbsp;<span class="texhtml">''p''<sub>1</sub>(''m'')</span>&nbsp; don't contain sufficient information to reconstruct the function&nbsp;<span class="texhtml">''x''(''m'',''n'')</span>.  </span>
  
 
----
 
----

Revision as of 13:05, 2 May 2017


ECE Ph.D. Qualifying Exam

Communication Networks Signal and Image processing (CS)

Question 5, August 2013(Published on May 2017)

Problem 1,2


Solution 1:

a)

$ {{P}_{0}}({{e}^{j\omega }})=\sum\limits_{n=-\infty }^{\infty }{{{p}_{0}}(n){{e}^{-jn\omega }}}=\sum\limits_{n=-\infty }^{\infty }{\left( \sum\limits_{m=-\infty }^{\infty }{x(m,n)} \right){{e}^{-jn\omega }}}=\sum\limits_{m=-\infty }^{\infty }{\sum\limits_{n=-\infty }^{\infty }{x(m,n)}{{e}^{-j(m0+n\omega )}}=X({{e}^{j0}},{{e}^{j\omega }})} $

b)

$ {{P}_{1}}({{e}^{j\omega }})=\sum\limits_{m=-\infty }^{\infty }{{{p}_{1}}(m){{e}^{-jm\omega }}}=\sum\limits_{m=-\infty }^{\infty }{\left( \sum\limits_{n=-\infty }^{\infty }{x(m,n)} \right){{e}^{-jm\omega }}}=\sum\limits_{m=-\infty }^{\infty }{\sum\limits_{n=-\infty }^{\infty }{x(m,n)}{{e}^{-j(m\omega +n0)}}=X({{e}^{j\omega }},{{e}^{j0}})} $

c)

$ \sum\limits_{n=-\infty }^{\infty }{{{p}_{0}}(n)}==\sum\limits_{n=-\infty }^{\infty }{\left( \sum\limits_{m=-\infty }^{\infty }{x(m,n)} \right)}=\sum\limits_{m=-\infty }^{\infty }{\sum\limits_{n=-\infty }^{\infty }{x(m,n)}{{e}^{-j(m0+n0)}}=X({{e}^{j0}},{{e}^{j0}})} $

d)

No, they don’t. From part (a) and (b), we know that $ {{P}_{0}}({{e}^{jw}}) $ and $ {{P}_{1}}({{e}^{jw}}) $ represent the horizontal and vertical axes of the 2D DSFT $ X({{e}^{j\mu }},{{e}^{j\upsilon }}) $, which is not enough for reconstruction of x(m, n). For example, $ {{x}_{1}}(m,n)=\left( \begin{matrix} 1 & 3 \\ 2 & 4 \\ \end{matrix} \right),_{{}}^{{}} and\ {{x}_{2}}(m,n)=\left( \begin{matrix} 0 & 4 \\ 3 & 3 \\ \end{matrix} \right) $ have the same $ {{p}_{0}}(n)=\left[ \begin{matrix} 3 & 7 \\ \end{matrix} \right]\ and\ {{p}_{1}}(m)=\left[ \begin{matrix} 4 \\ 6 \\ \end{matrix} \right] $. So, x(m,n) can’t be reconstructed from $ {{p}_{0}}(n)=\left[ \begin{matrix} 3 & 7 \\ \end{matrix} \right]\ and\ {{p}_{1}}(m)=\left[ \begin{matrix} 4 \\ 6 \\ \end{matrix} \right] $.

Solution 2:

a)

$ {{P}_{0}}({{e}^{j\omega }})=\sum\limits_{n=-\infty }^{\infty }{\sum\limits_{m=-\infty }^{\infty }{x(m,n)} {{e}^{-jn\omega }}}=X({{e}^{j0}},{{e}^{j\omega }}) $

Multiple steps are skipped in this solution, which are necessary for clarity.

b)

$ {{P}_{1}}({{e}^{j\omega }})=\sum\limits_{m=-\infty }^{\infty }{\sum\limits_{n=-\infty }^{\infty }{x(m,n)}{{e}^{-jm\omega }}}=X({{e}^{j\omega }},{{e}^{j0}}) $

Multiple steps are skipped in this solution, which are necessary for clarity.

c)

They do not; $ {{p}_{0}}(n)\ and\ {{p}_{1}}(m) $ are projections at two angles, and do not contain enough information to reconstruct x(m,n).

Sol2 2013 1d 1.jpg

$ \begin{align} & X({{e}^{j\mu }},{{e}^{j\upsilon }})=\sum\limits_{m=-\infty }^{\infty }{\left[ \sum\limits_{n=-\infty }^{\infty }{x(m,n)} \right]}{{e}^{-jm\mu }}{{e}^{-jn\upsilon }} \\ & X({{e}^{j\mu }},{{e}^{j\upsilon }})\ne \sum\limits_{m=-\infty }^{\infty }{{{p}_{1}}(m)}{{e}^{-jm\mu }}{{e}^{-jn\upsilon }}\ne {{P}_{1}}({{e}^{j\mu }}){{e}^{-jn\upsilon }} \\ & \Rightarrow Can't\ do\ it! \end{align} $


- To form reconstruction, need projections along many angles.

- Could reconstruct a very simple object, like triangle.

Sol2 2013 1d 2.jpg

The question asks a counter example if  p0(n) and p1(m)  don't contain sufficient information to reconstruct the function x(m,n).


Related Problem

Consider the 2D discrete space signal x(m,n) with the DSFT of X(ejμ,ejν) given by 

$ X(e^{j\mu},e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-j(m\mu+n\nu)} $

Then define

$ p_{0}(n) = \sum_{m=-\infty}^{\infty}x(m,n) $

$ p_{1}(m) = \sum_{n=-\infty}^{\infty}x(m,n) $

with corresponding DTFT given by 

$ P_{0}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} p_{0}(n)e^{-jn\omega} $

$ P_{1}(e^{j\omega}) = \sum_{m=-\infty}^{\infty} p_{0}(m)e^{-jm\omega} $

a) Derive an expression for P0(ejω) in terms of X(ejμ,wjν). 

b) Derive an expression P0(ejω) in terms of X(ejμ,ejν).

c) Find a function x(m,n) that is not zero everywhere such that $ {{p}_{0}}(n)={{p}_{1}}(m)=0 $ for all m and n.

d) Do the function p0(n) and p1(m) together contain sufficient information to uniquely reconstruct the function x(m,n)? Justify your answer.

(Refer to ECE 637 Spring 2015 Exam 1 Problem 2.)


Back to ECE QE page:

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett