Line 12: Line 12:
 
a)  
 
a)  
 
<math>
 
<math>
\[{{P}_{0}}({{e}^{j\omega }})=\sum\limits_{n=-\infty }^{\infty }{{{p}_{0}}(n){{e}^{-jn\omega }}}=\sum\limits_{n=-\infty }^{\infty }{\left( \sum\limits_{m=-\infty }^{\infty }{x(m,n)} \right){{e}^{-jn\omega }}}=\sum\limits_{m=-\infty }^{\infty }{\sum\limits_{n=-\infty }^{\infty }{x(m,n)}{{e}^{-j(m0+n\omega )}}=X({{e}^{j0}},{{e}^{j\omega }})}
+
{{P}_{0}}({{e}^{j\omega }})=\sum\limits_{n=-\infty }^{\infty }{{{p}_{0}}(n){{e}^{-jn\omega }}}=\sum\limits_{n=-\infty }^{\infty }{\left( \sum\limits_{m=-\infty }^{\infty }{x(m,n)} \right){{e}^{-jn\omega }}}=\sum\limits_{m=-\infty }^{\infty }{\sum\limits_{n=-\infty }^{\infty }{x(m,n)}{{e}^{-j(m0+n\omega )}}=X({{e}^{j0}},{{e}^{j\omega }})}
 
</math><br>  
 
</math><br>  
  
and
+
b)
  
<span class="texhtml"><math>p_0(e^{jw}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}  
+
<math>
x(m,n)e^{-jnw}</math>,&nbsp;</span>
+
{{P}_{1}}({{e}^{j\omega }})=\sum\limits_{m=-\infty }^{\infty }{{{p}_{1}}(m){{e}^{-jm\omega }}}=\sum\limits_{m=-\infty }^{\infty }{\left( \sum\limits_{n=-\infty }^{\infty }{x(m,n)} \right){{e}^{-jm\omega }}}=\sum\limits_{m=-\infty }^{\infty }{\sum\limits_{n=-\infty }^{\infty }{x(m,n)}{{e}^{-j(m\omega +n0)}}=X({{e}^{j\omega }},{{e}^{j0}})}
 
+
</math>
we have:
+
 
+
<math> p_0(e^{jw}) = X(e^{j\mu}, e^{jw})\vert_{\mu=0} </math>
+
 
+
b) Similarly to a), we have:
+
 
+
<math> p_1(e^{jw}) = X(e^{jw}, e^{j\nu})\vert_{\nu=0} </math>
+
  
 
<span style="color:green"> The solution used <math> v </math> and <math>\mu</math> to represent frequency axis. It used <math> w</math> to subuslitude  both <math> v </math> and <math>\mu</math> which is confusing. The solution should stated let <math> w=v </math> and <math> w=\mu </math> at (a) and (b).  </span><br>
 
<span style="color:green"> The solution used <math> v </math> and <math>\mu</math> to represent frequency axis. It used <math> w</math> to subuslitude  both <math> v </math> and <math>\mu</math> which is confusing. The solution should stated let <math> w=v </math> and <math> w=\mu </math> at (a) and (b).  </span><br>
c) <br> <math> \sum_{n=-\infty}^{\infty} p_0(n) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n) = X(e^{j\mu}, e^{j\nu}) |_{\mu=0, \nu=0} </math>
 
which is the DC component of the image.
 
  
d) No, it can't provide sufficient information. From the expression in a) and b), we see that <math>p_0(e^{jw}) </math> and <math> p_1(e^{jw}) </math> are only slices of the DSFT. The information when <math>\mu</math> and <math>\nu</math> are not zeros is lost. <br>
+
c) <br> <math>
A simple example would be as follows.<br>
+
\sum\limits_{n=-\infty }^{\infty }{{{p}_{0}}(n)}==\sum\limits_{n=-\infty }^{\infty }{\left( \sum\limits_{m=-\infty }^{\infty }{x(m,n)} \right)}=\sum\limits_{m=-\infty }^{\infty }{\sum\limits_{n=-\infty }^{\infty }{x(m,n)}{{e}^{-j(m0+n0)}}=X({{e}^{j0}},{{e}^{j0}})}
Let <br> <math>
+
</math>  
x(m,n) =  
+
\left[ {\begin{array}{*{20}{c}}
+
1 ~ 2 \\
+
3 ~ 4\\
+
\end{array}} \right] </math>, so<br> <math> p_0(n) =[4~6], p_1(m) = [3 ~7]^T </math>.
+
<br>
+
With the above the information of the projection, the original form of the 2D signal cannot be determined. For example, <math>
+
x(m,n) =
+
\left[ {\begin{array}{*{20}{c}}
+
2 ~ 1 \\
+
2 ~ 5\\
+
\end{array}} \right] </math> gives the same projection. '''
+
  
 +
d) No, they don’t. From part (a) and (b), we know that  and  represent the horizontal and vertical axes of the 2D DSFT  , which is not enough for reconstruction of x(m, n). For example,  have the same  . So, x(m,n) can’t be reconstructed from  .
 
== Solution 2:  ==
 
== Solution 2:  ==
  

Revision as of 19:46, 1 May 2017


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

= Question 5, August 2013(Published on May 2017),

Problem 1,2



Solution 1:

a) $ {{P}_{0}}({{e}^{j\omega }})=\sum\limits_{n=-\infty }^{\infty }{{{p}_{0}}(n){{e}^{-jn\omega }}}=\sum\limits_{n=-\infty }^{\infty }{\left( \sum\limits_{m=-\infty }^{\infty }{x(m,n)} \right){{e}^{-jn\omega }}}=\sum\limits_{m=-\infty }^{\infty }{\sum\limits_{n=-\infty }^{\infty }{x(m,n)}{{e}^{-j(m0+n\omega )}}=X({{e}^{j0}},{{e}^{j\omega }})} $

b)

$ {{P}_{1}}({{e}^{j\omega }})=\sum\limits_{m=-\infty }^{\infty }{{{p}_{1}}(m){{e}^{-jm\omega }}}=\sum\limits_{m=-\infty }^{\infty }{\left( \sum\limits_{n=-\infty }^{\infty }{x(m,n)} \right){{e}^{-jm\omega }}}=\sum\limits_{m=-\infty }^{\infty }{\sum\limits_{n=-\infty }^{\infty }{x(m,n)}{{e}^{-j(m\omega +n0)}}=X({{e}^{j\omega }},{{e}^{j0}})} $

The solution used $ v $ and $ \mu $ to represent frequency axis. It used $ w $ to subuslitude both $ v $ and $ \mu $ which is confusing. The solution should stated let $ w=v $ and $ w=\mu $ at (a) and (b).

c)
$ \sum\limits_{n=-\infty }^{\infty }{{{p}_{0}}(n)}==\sum\limits_{n=-\infty }^{\infty }{\left( \sum\limits_{m=-\infty }^{\infty }{x(m,n)} \right)}=\sum\limits_{m=-\infty }^{\infty }{\sum\limits_{n=-\infty }^{\infty }{x(m,n)}{{e}^{-j(m0+n0)}}=X({{e}^{j0}},{{e}^{j0}})} $

d) No, they don’t. From part (a) and (b), we know that and represent the horizontal and vertical axes of the 2D DSFT , which is not enough for reconstruction of x(m, n). For example, have the same . So, x(m,n) can’t be reconstructed from .

Solution 2:

a) From the question, 

$ P_0(e^{j\mu}) = \sum_{n=-\infty}^{\infty}p_0(n)e^{-jn\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}\cdot1 = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}e^{-jm\cdot0} = X(e^{j\mu},e^{j\cdot0}) $

Therefore, 

$ P_0(e^{j\mu}) = X(e^{j\mu},e^{j\nu})\vert_{\nu = 0} $

b) Similar to question a), 

$ P_1(e^{j\nu}) = \sum_{m=-\infty}^{\infty}p_1(m)e^{-jm\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jm\nu}\cdot1 = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\cdot0}e^{-jm\nu} = X(e^{j\cdot0},e^{j\nu}) $

Therefore,

$ P_0(e^{j\mu}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0} $

To be consistent with the problem statement, frequency notation$ \mu $ corresponds to the spatial notation $ m $ and is the first parameter. As a result, the solution of the (a) and (b) can be switched.


c)

$ \sum_{n = -\infty}^{\infty}p_0(n) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) =\sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) e^{-jn\cdot0}e^{-jm\cdot0} = X(e^{-jn\cdot0},e^{-jm\cdot0}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0, \nu = 0} $

d)No. P0  only represents the μ axis on X(ejμ,ejν). P1 only represents the ν axis on X(ejμ,ejν). It is not enough to represent X(ejμ,ejν).

Similarly to the above comment, $ P_0(e^{jw}) $is the slice along $ \nu $ axis.

For example, assume two different array x1 and x2.

$ x_1 = \left [ \begin{array}{cc} 3 & 4 \\ 5 & 6 \end{array} \right ] $ and $ x_2 = \left [ \begin{array}{cc} 4 & 3 \\ 4 & 7 \end{array} \right ] $ have the same pand p1

Therefore, P0 and P1 will be the same for X0 and X1. We will not be able to recover x0 and x1 based on P0 and P1



Related Problem

1.Let g(x,y) = s'i'n'c(x / 2,y / 2), and let <span class="texhtml" />s(m,n) = g('T,n'T) where T = 1.

a) Calculate G(μ,ν) the CSFT of g(x,y).
b) Calculate S(ejμ,ejν) the DSFT of s(m,n).

2. Assume that we know (or can measure) the function

$ p(x) = \int_{-\infty}^{\infty}f(x,y)dy $

Using the definitions of the Fourier transform, derive an expressoin for F(u,0) in terms of the function p(x).

(Refer to ECE637 2008 Exam1 Problem2.)


Back to ECE QE page:

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva