Line 7: Line 7:
  
 
Solution: <br />
 
Solution: <br />
(1) <math>e^jω_0n</math> --> <div style="font-family: Verdana, sans-serif; font-size: 12px; text-align: justify; width: 2%; margin: auto; border: 1px solid #aaa; padding: 3em;"> LTI </div> --><math>H(ω_0)e^jω_0n</math><br />
+
(1) <math>e^(jω_0n)</math> --> <div style="font-family: Verdana, sans-serif; font-size: 12px; text-align: justify; width: 2%; margin: auto; border: 1px solid #aaa; padding: 3em;"> LTI </div> --><math>H(ω_0)e^(jω_0n)</math><br />
 
(2)y[n] = x[n] * h[n] <br />
 
(2)y[n] = x[n] * h[n] <br />
(3)<math>{\mathcal X}(\omega)</math>
+
(3)<math>{\mathcal y}(\omega)</math>
  
 
(20 pts)2. For each ROAC, determine which of these system properties apply. (Just list the letters of the properties that apply.) Below we describe the ROAC of the transfer function of an LTI system.
 
(20 pts)2. For each ROAC, determine which of these system properties apply. (Just list the letters of the properties that apply.) Below we describe the ROAC of the transfer function of an LTI system.

Revision as of 15:15, 14 November 2016

Sample Midterm Examination 2

ECE 438

Fall 2016

Instructor: Prof. Mimi Boutin

(15 pts)1. List at least three properties of an LTI system.

Solution:

(1) $ e^(jω_0n) $ -->
LTI
-->$ H(ω_0)e^(jω_0n) $

(2)y[n] = x[n] * h[n]
(3)$ {\mathcal y}(\omega) $

(20 pts)2. For each ROAC, determine which of these system properties apply. (Just list the letters of the properties that apply.) Below we describe the ROAC of the transfer function of an LTI system.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett