Line 6: Line 6:
 
<math>U=t^2+5</math>             
 
<math>U=t^2+5</math>             
  
<math>dU=2t  dt</math>   
+
<math>dU=2tdt</math>   
 
            
 
            
 
Limits:
 
Limits:
 +
 
<math>U(3)=3^2+5=9+5=14</math>
 
<math>U(3)=3^2+5=9+5=14</math>
  
Line 20: Line 21:
  
 
<math>E=\ln {30/14}</math>
 
<math>E=\ln {30/14}</math>
 +
 +
==Power==
 +
 +
<math>P=\dfrac{1}{5-3}\int_3^{5}{\dfrac{2t}{t^2+5}dt}</math>
 +
 +
<math>U=t^2+5</math>           
 +
 +
<math>dU=2tdt</math> 
 +
         
 +
Limits:
 +
 +
<math>U(3)=3^2+5=9+5=14</math>
 +
 +
<math>U(5)=5^2+5=25+5=30</math>
 +
 +
<math>P=\int_{14}^{30}\dfrac{du}{U}</math>
 +
 +
<math>P=\ln U |_{U=14}^{U=30}</math>
 +
 +
<math>P=\ln 30 - \ln 14</math>
 +
 +
<math>P=\ln {30/14}</math>

Revision as of 13:32, 4 September 2008

Compute the Energy and Power of the signal $ x(t)=\dfrac{2t}{t^2+5} $ between 3 and 5 seconds.

Energy

$ E=\int_3^{5}{\dfrac{2t}{t^2+5}dt} $

$ U=t^2+5 $

$ dU=2tdt $

Limits:

$ U(3)=3^2+5=9+5=14 $

$ U(5)=5^2+5=25+5=30 $

$ E=\int_{14}^{30}\dfrac{du}{U} $

$ E=\ln U |_{U=14}^{U=30} $

$ E=\ln 30 - \ln 14 $

$ E=\ln {30/14} $

Power

$ P=\dfrac{1}{5-3}\int_3^{5}{\dfrac{2t}{t^2+5}dt} $

$ U=t^2+5 $

$ dU=2tdt $

Limits:

$ U(3)=3^2+5=9+5=14 $

$ U(5)=5^2+5=25+5=30 $

$ P=\int_{14}^{30}\dfrac{du}{U} $

$ P=\ln U |_{U=14}^{U=30} $

$ P=\ln 30 - \ln 14 $

$ P=\ln {30/14} $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman