(Energy)
(Energy)
Line 9: Line 9:
  
  
<math>E=\int_14^{30}\dfrac{du}{U}</math>
+
<math>E=\int_{14}^{30}\dfrac{du}{U}</math>
  
 
<math>E=\ln U |_{U=14}^{U=30}</math>
 
<math>E=\ln U |_{U=14}^{U=30}</math>

Revision as of 13:29, 4 September 2008

Compute the Energy and Power of the signal $ x(t)=\dfrac{2t}{t^2+5} $ between 3 and 5 seconds.

Energy

$ E=\int_3^{5}{\dfrac{2t}{t^2+5}dt} $

$ U=t^2+5 $ $ U(3)=3^2+5=9+5=14 $

$ dU=2tdt $ $ U(5)=5^2+5=25+5=30 $


$ E=\int_{14}^{30}\dfrac{du}{U} $

$ E=\ln U |_{U=14}^{U=30} $

$ E=\ln 30 - \ln 14 $

$ E=\ln {30/14} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood