(code posted) |
(make code work with general mean and covariance matrix) |
||
Line 21: | Line 21: | ||
% e --- Bayes Error | % e --- Bayes Error | ||
− | + | ||
+ | |||
+ | temp = randn(n,N); | ||
+ | [A, B] = eig(Sigma1); | ||
+ | x1 = A*sqrt(B)*temp + repmat(M1, 1, N); | ||
y1 = discFunc(x1, P1, M1, Sigma1, P2, M2, Sigma2, 1); | y1 = discFunc(x1, P1, M1, Sigma1, P2, M2, Sigma2, 1); | ||
e1 = y1/N; | e1 = y1/N; | ||
Line 27: | Line 31: | ||
temp = randn(n,N); | temp = randn(n,N); | ||
− | x2 = sqrt( | + | [A, B] = eig(Sigma2); |
+ | x2 = A*sqrt(B)*temp + repmat(M2, 1, N); | ||
y2 = discFunc(x2, P1, M1, Sigma1, P2, M2, Sigma2, 2); | y2 = discFunc(x2, P1, M1, Sigma1, P2, M2, Sigma2, 2); | ||
e2 = y2/N; | e2 = y2/N; | ||
Line 36: | Line 41: | ||
end | end | ||
+ | |||
+ | |||
</source> | </source> | ||
Latest revision as of 17:50, 11 February 2016
Function to compute Bayes error (based on Monte-Carlo method)
function [ e ] = BayesErrorMonteCarlo( n, P1, M1, Sigma1, P2, M2, Sigma2, N ) %Compute Bayes Error using Monte-Carlo method %J. Zhou % ....Input Parameters % n --- data dimension % P1 --- prior probability of class 1 % M1 --- mean of class 1 data % Sigma1 --- covariance of class 1 data % p2 --- prior probability of class 2 % M2 --- mean of class 2 data % Sigma2 --- covariance of class 2 data % N --- number of samples using in Monte-Carlo %....Output Parameters % e --- Bayes Error temp = randn(n,N); [A, B] = eig(Sigma1); x1 = A*sqrt(B)*temp + repmat(M1, 1, N); y1 = discFunc(x1, P1, M1, Sigma1, P2, M2, Sigma2, 1); e1 = y1/N; temp = randn(n,N); [A, B] = eig(Sigma2); x2 = A*sqrt(B)*temp + repmat(M2, 1, N); y2 = discFunc(x2, P1, M1, Sigma1, P2, M2, Sigma2, 2); e2 = y2/N; % Bayes Error e e = P1*e1+P2*e2; end
Function #1 used in previous code
function [ z ] = discFunc(x,P1,M1,Sigma1,P2,M2,Sigma2, CFlag) %compute 3.119 and return number of samples that are misclassified %J. Zhou [N,M] = size(x); %M samples invSigma1 = inv(Sigma1); invSigma2 = inv(Sigma2); temp = 0.5*log(det(Sigma1)/det(Sigma2)) - log(P1/P2); y = zeros(1,M); for i = 1:M if 0.5*(x(:,i)-M1)'*invSigma1*(x(:,i)-M1) - ... 0.5*(x(:,i)-M2)'*invSigma2*(x(:,i)-M2) + temp > 0 if CFlag == 1 y(i) = 1; else y(i) = 0; end else if CFlag == 1 y(i) = 0; else y(i) = 1; end end end z = sum(y); end
Test Function
%% ECE662 % This code tests BayesErrorMonteCarlo.m using a data set with known % Bayes Error % J. Zhou close all; clear all; % test data using Data I-^ ; Fukunaga page 45 n = 8; %data dimension P1 = 0.5; % prior probability for class 1 M1 = zeros(n, 1); %mean of class 1 data Sigma1 = eye(n,n); %covariance of class 1 data P2 = 0.5; % prior probability for class 2 M2 = [3.86, 3.10, 0.84, 0.84, 1.64, 1.08, 0.26, 0.01]'; Sigma2 = diag([8.41, 12.06, 0.12, 0.22, 1.49, 1.77, 0.35, 2.73]); %Number of samples for Monte-Carlo, start with 1 million, run a few times %to see how much computed Bayes error vary, if it varies quite bit, then %increase the number of samples, do this until Bayes error become %relatively stable. N = 1000000; e = BayesErrorMonteCarlo(n, P1, M1, Sigma1, P2, M2, Sigma2, N ); % Bayes Error in this case should 1.46% sprintf('Bayes Error in this case should be %.3f', 0.018) sprintf('Bayes Error computed is %.3f', e)