Line 86: Line 86:
 
</math>
 
</math>
  
 +
===Similar Problem===
 +
 +
Let <math>X(t)</math> be a Poisson random process with mean function <math>\mu(t)</math> and covariance function <math>C_{xx}(t_1,t_2)</math>. Find the <math>n^{th}</math>-order characteristic function of <math>X(t)</math>.
 
----
 
----
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 22:13, 31 January 2016


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution 1

Let $ \lambda = \frac{1}{\mu} $, then $ E(X)=E(Y)=\frac{1}{\lambda} $.

$ \phi_{X+Y}=E[e^{it(X+Y)}]=\int_{X}\int_{Y}e^{it(X+Y)}p(x,y)dxdy $

As X and Y are independent

$ \phi_{X+Y}=\int_{X}\int_{Y}e^{it(x+y)}p(x)p(y)dxdy = \int_{X}e^{itx}p(x)dx\int_{Y}e^{ity}p(y)dy=\phi_{X}\phi_{Y} $

And $ \phi_{X}=E[e^{itX}]=\int_{-\infty}^{\infty}e^{itx}\lambda e^{-\lambda x} dx \\ = \lambda \int_{-\infty}^{\infty}e^{-(\lambda -iu)x} dx = -\frac{\lambda}{\lambda-iu}e^{-(\lambda-iu)x}|_0^\infty\\ =\frac{\lambda}{\lambda-iu} $

So $ \phi_{X+Y}=E[e^{it(X+Y)}]=\phi_{X}\phi_{Y} =( \frac{\lambda}{\lambda-iu})^2=\frac{1}{(1+iu\mu)^2} $

Solution 2

$ \phi_X(w)=E[e^{iwX}]=\int_0^{+\infty}e^{iwX}\frac{1}{\mu}e^{-\frac{x}{\mu}}dx=e^{X(iw-\frac{1}{\mu})}\frac{1}{\mu}\frac{1}{iw-\frac{1}{\mu}}|_0^{+\infty}\\ = 0 - \frac{1}{\mu}\cdot\frac{1}{iw-\frac{1}{\mu}}=\frac{1}{1-iw\mu}\\ \phi_{X+Y}(w)=E[e^{iw(X+Y)}]\\ =\int\int e^{iw(X+Y)}f_X(x)f_Y(y)dxdy = \int e^{iwx}f_X(x)dx \cdot \int e^{iwy}f_Y(y)dy=\phi_X(w)\phi_Y(w)\\ =\frac{1}{(1+iw\mu)^2} $

Solution 3

For this problem, it is very useful to note that for any independent random variables $ X $ and $ Y $ and their characteristic functions $ \phi_X(\omega), \phi_Y(\omega) $ we have the following property:

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) $.

We then note that the characteristic function of an exponential random variable $ Z $ is written as

$ \phi_{Z}(\omega) = \frac{\lambda}{\lambda - i\omega} $

where $ \lambda $ parameterizes the exponential distribution. As such, we can write the characteristic function of $ X + Y $ as

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) = \left(\frac{\lambda}{\lambda - i\omega}\right)^2 $.

Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. $ \frac{1}{\lambda} $. Then the above expression becomes

$ \phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu} - i\omega}\right)^2. $.

Multiplying by $ \frac{\mu}{\mu} $ gives

$ \phi_{X+Y}(\omega) = \left(\frac{1}{1-i\omega\mu}\right)^2 $

Similar Problem

Let $ X(t) $ be a Poisson random process with mean function $ \mu(t) $ and covariance function $ C_{xx}(t_1,t_2) $. Find the $ n^{th} $-order characteristic function of $ X(t) $.


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn