Line 21: Line 21:
 
</center>
 
</center>
 
----
 
----
 +
===Solution 1===
 
<math>
 
<math>
 
E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =\frac{1}{n}\sum_i^n E(X_i)=0
 
E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =\frac{1}{n}\sum_i^n E(X_i)=0
Line 43: Line 44:
  
 
Thus <math>E(X_i-S_n)E(S_n)=E((X_i-S_n)S_n)</math>, <math>S_n</math> and <math>X_i-S_n</math> are uncorrelated.
 
Thus <math>E(X_i-S_n)E(S_n)=E((X_i-S_n)S_n)</math>, <math>S_n</math> and <math>X_i-S_n</math> are uncorrelated.
 +
 +
===Solution 2===
 +
<math> S_n=\frac{1}{n}\sum_{j=1}{n}X_j </math>, note: in the problem statement, it should be <math>\frac{1}{n}, because <math>S_n</math> is the sample mean.
 +
 +
<math>
 +
E[S_n]=E[\frac{1}{n}\sum_{j=1}{n}X_j] = \frac{1}{n}\sum_{j=1}{n}E[X_j ] = \frac{1}{n}\sum_{j=1}{n} \mu = 0\\
 +
E[(X_i-\mu)^2]=E[X_i^2]=\sigma^2
 +
</math>
 +
 +
<math>
 +
E[S_n]=E[\frac{1}{n}\sum_{j=1}{n}X_j] = \frac{1}{n}\sum_{j=1}{n}E[X_j ] = \frac{1}{n}\sum_{j=1}{n} \mu = 0\\
 +
E[(X_i-\mu)^2]=E[X_i^2]=\sigma^2
 +
</math>
 
----
 
----
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 13:05, 7 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution 1

$ E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =\frac{1}{n}\sum_i^n E(X_i)=0 $

$ E(X_i-S_n)=E(X_i-\frac{1}{n}\sum_k^n X_k) =E(X_i)-E(\frac{1}{n}\sum_k^n X_k)=0 $

$ E((X_i-S_n)S_n)=E(X_iS_n-S_n^2) $

As for any $ i,j\in \{1,2,...,n\} $, we have $ E(X_i\cdot X_j) = E(X_i)E(X_j)=0 $

$ E(X_iS_n-S_n^2) = E(X_iS_n)-E(S_n^2)\\ =E(\sum_k^nX_iX_K) - E(\sum_i^n\sum_k^nX_iX_K)\\ =\sum_k^nE(X_iX_K) - \sum_i^n\sum_k^nE(X_iX_K) \\ =0 $

Thus $ E(X_i-S_n)E(S_n)=E((X_i-S_n)S_n) $, $ S_n $ and $ X_i-S_n $ are uncorrelated.

Solution 2

$ S_n=\frac{1}{n}\sum_{j=1}{n}X_j $, note: in the problem statement, it should be $ \frac{1}{n}, because <math>S_n $ is the sample mean.

$ E[S_n]=E[\frac{1}{n}\sum_{j=1}{n}X_j] = \frac{1}{n}\sum_{j=1}{n}E[X_j ] = \frac{1}{n}\sum_{j=1}{n} \mu = 0\\ E[(X_i-\mu)^2]=E[X_i^2]=\sigma^2 $

$ E[S_n]=E[\frac{1}{n}\sum_{j=1}{n}X_j] = \frac{1}{n}\sum_{j=1}{n}E[X_j ] = \frac{1}{n}\sum_{j=1}{n} \mu = 0\\ E[(X_i-\mu)^2]=E[X_i^2]=\sigma^2 $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang