Line 21: Line 21:
 
</center>
 
</center>
 
----
 
----
 +
===Solution 1===
 
<math>
 
<math>
 
E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =\frac{1}{n}\sum_i^n E(X_i)=0
 
E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =\frac{1}{n}\sum_i^n E(X_i)=0
Line 43: Line 44:
  
 
Thus <math>E(X_i-S_n)E(S_n)=E((X_i-S_n)S_n)</math>, <math>S_n</math> and <math>X_i-S_n</math> are uncorrelated.
 
Thus <math>E(X_i-S_n)E(S_n)=E((X_i-S_n)S_n)</math>, <math>S_n</math> and <math>X_i-S_n</math> are uncorrelated.
 +
 +
===Solution 2===
 +
<math> S_n=\frac{1}{n}\sum_{j=1}{n}X_j </math>, note: in the problem statement, it should be <math>\frac{1}{n}, because <math>S_n</math> is the sample mean.
 +
 +
<math>
 +
E[S_n]=E[\frac{1}{n}\sum_{j=1}{n}X_j] = \frac{1}{n}\sum_{j=1}{n}E[X_j ] = \frac{1}{n}\sum_{j=1}{n} \mu = 0\\
 +
E[(X_i-\mu)^2]=E[X_i^2]=\sigma^2
 +
</math>
 +
 +
<math>
 +
E[S_n]=E[\frac{1}{n}\sum_{j=1}{n}X_j] = \frac{1}{n}\sum_{j=1}{n}E[X_j ] = \frac{1}{n}\sum_{j=1}{n} \mu = 0\\
 +
E[(X_i-\mu)^2]=E[X_i^2]=\sigma^2
 +
</math>
 
----
 
----
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 12:05, 7 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution 1

$ E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =\frac{1}{n}\sum_i^n E(X_i)=0 $

$ E(X_i-S_n)=E(X_i-\frac{1}{n}\sum_k^n X_k) =E(X_i)-E(\frac{1}{n}\sum_k^n X_k)=0 $

$ E((X_i-S_n)S_n)=E(X_iS_n-S_n^2) $

As for any $ i,j\in \{1,2,...,n\} $, we have $ E(X_i\cdot X_j) = E(X_i)E(X_j)=0 $

$ E(X_iS_n-S_n^2) = E(X_iS_n)-E(S_n^2)\\ =E(\sum_k^nX_iX_K) - E(\sum_i^n\sum_k^nX_iX_K)\\ =\sum_k^nE(X_iX_K) - \sum_i^n\sum_k^nE(X_iX_K) \\ =0 $

Thus $ E(X_i-S_n)E(S_n)=E((X_i-S_n)S_n) $, $ S_n $ and $ X_i-S_n $ are uncorrelated.

Solution 2

$ S_n=\frac{1}{n}\sum_{j=1}{n}X_j $, note: in the problem statement, it should be $ \frac{1}{n}, because <math>S_n $ is the sample mean.

$ E[S_n]=E[\frac{1}{n}\sum_{j=1}{n}X_j] = \frac{1}{n}\sum_{j=1}{n}E[X_j ] = \frac{1}{n}\sum_{j=1}{n} \mu = 0\\ E[(X_i-\mu)^2]=E[X_i^2]=\sigma^2 $

$ E[S_n]=E[\frac{1}{n}\sum_{j=1}{n}X_j] = \frac{1}{n}\sum_{j=1}{n}E[X_j ] = \frac{1}{n}\sum_{j=1}{n} \mu = 0\\ E[(X_i-\mu)^2]=E[X_i^2]=\sigma^2 $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood