Line 47: Line 47:
 
===Solution 2===
 
===Solution 2===
 
<math>
 
<math>
\phi_X(w)=E[e^{iwX}]=\int_0^{\infty}e^{iwX}\frac{1}{\mu}e^{-\frac{x}{\mu}dx=
+
\phi_X(w)=E[e^{iwX}]=\int_0^{\infty}e^{iwX}\frac{1}{\mu}e^{-\frac{x}{\mu}}dx=
 
</math>
 
</math>
 
----
 
----

Revision as of 11:35, 7 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution 1

Let $ \lambda = \frac{1}{\mu} $, then $ E(X)=E(Y)=\frac{1}{\lambda} $.

$ \phi_{X+Y}=E[e^{it(X+Y)}]=\int_{X}\int_{Y}e^{it(X+Y)}p(x,y)dxdy $

As X and Y are independent

$ \phi_{X+Y}=\int_{X}\int_{Y}e^{it(x+y)}p(x)p(y)dxdy = \int_{X}e^{itx}p(x)dx\int_{Y}e^{ity}p(y)dy=\phi_{X}\phi_{Y} $

$ \phi_{X}=E[e^{itX}]=\int_{-\infty}^{\infty}e^{itx}\lambda e^{-\lambda x} dx \\ = \lambda \int_{-\infty}^{\infty}e^{-(\lambda -iu)x} dx = -\frac{\lambda}{\lambda-iu}e^{-(\lambda-iu)x}|_0^\infty\\ =\frac{\lambda}{\lambda-iu} $

So $ \phi_{X+Y}=E[e^{it(X+Y)}]=\phi_{X}\phi_{Y} =( \frac{\lambda}{\lambda-iu})^2 $

Solution 2

$ \phi_X(w)=E[e^{iwX}]=\int_0^{\infty}e^{iwX}\frac{1}{\mu}e^{-\frac{x}{\mu}}dx= $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal