Line 21: Line 21:
 
</center>
 
</center>
 
----
 
----
===Solution===
+
===Solution 1===
 
Let <math>\lambda = \frac{1}{\mu}</math>, then <math>E(X)=E(Y)=\frac{1}{\lambda}</math>.  
 
Let <math>\lambda = \frac{1}{\mu}</math>, then <math>E(X)=E(Y)=\frac{1}{\lambda}</math>.  
  
Line 43: Line 43:
 
<math>
 
<math>
 
\phi_{X+Y}=E[e^{it(X+Y)}]=\phi_{X}\phi_{Y} =( \frac{\lambda}{\lambda-iu})^2
 
\phi_{X+Y}=E[e^{it(X+Y)}]=\phi_{X}\phi_{Y} =( \frac{\lambda}{\lambda-iu})^2
 +
</math>
 +
 +
===Solution 2===
 +
<math>
 +
\phi_X(w)=E[e^{iwX}]=\int_0^{\infty}e^{iwX}\frac{1}{\mu}e^{-\frac{x}{\mu}dx=
 
</math>
 
</math>
 
----
 
----

Revision as of 11:34, 7 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution 1

Let $ \lambda = \frac{1}{\mu} $, then $ E(X)=E(Y)=\frac{1}{\lambda} $.

$ \phi_{X+Y}=E[e^{it(X+Y)}]=\int_{X}\int_{Y}e^{it(X+Y)}p(x,y)dxdy $

As X and Y are independent

$ \phi_{X+Y}=\int_{X}\int_{Y}e^{it(x+y)}p(x)p(y)dxdy = \int_{X}e^{itx}p(x)dx\int_{Y}e^{ity}p(y)dy=\phi_{X}\phi_{Y} $

$ \phi_{X}=E[e^{itX}]=\int_{-\infty}^{\infty}e^{itx}\lambda e^{-\lambda x} dx \\ = \lambda \int_{-\infty}^{\infty}e^{-(\lambda -iu)x} dx = -\frac{\lambda}{\lambda-iu}e^{-(\lambda-iu)x}|_0^\infty\\ =\frac{\lambda}{\lambda-iu} $

So $ \phi_{X+Y}=E[e^{it(X+Y)}]=\phi_{X}\phi_{Y} =( \frac{\lambda}{\lambda-iu})^2 $

Solution 2

$ \phi_X(w)=E[e^{iwX}]=\int_0^{\infty}e^{iwX}\frac{1}{\mu}e^{-\frac{x}{\mu}dx= $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010