Line 21: Line 21:
 
</center>
 
</center>
 
----
 
----
Type here
+
<math>
 +
E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =frac{1}{n}\sum_i^n E(X_i)=0
 +
</math>
 +
 
 +
<math>
 +
E(X_i-S_n)=E(X_i-\frac{1}{n}\sum_k^n X_k) =E(X_i)-E(\frac{1}{n}\sum_k^n X_k)=0
 +
</math>
 
----
 
----
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 00:59, 4 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


$ E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =frac{1}{n}\sum_i^n E(X_i)=0 $

$ E(X_i-S_n)=E(X_i-\frac{1}{n}\sum_k^n X_k) =E(X_i)-E(\frac{1}{n}\sum_k^n X_k)=0 $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach