Line 10: Line 10:
 
:[[CS5_2015_Aug_prob1_solution| Part 1 ]],[[CS5_2015_Aug_prob2_solution| 2 ]]
 
:[[CS5_2015_Aug_prob1_solution| Part 1 ]],[[CS5_2015_Aug_prob2_solution| 2 ]]
 
----
 
----
== Solution: ==
+
== Solution 1: ==
 +
 
 +
a) <math> Y_{x} </math> is Poisson random variable, <math> E[Y_{x}]=\lambda_{x}</math>.
 +
 
 +
(b) For Poisson r.v., <math>E[Y_{x}]=Var[Y_{x}]\\
 +
\Rightarrow
 +
Var[Y_{x}]=\lambda_{x}
 +
</math>
 +
 
 +
(c) The attenuation of photons obeys:
 +
 
 +
<math>\frac{\partial \lambda_{x}}{\partial x}=-\mu(x)\lambda_{x}</math>
 +
 
 +
(d) The solution is:
 +
 
 +
<math>\lambda_{x}=\lambda_{0}e^{-\int_0^x \mu(t)\partial t}</math>
 +
(e) Based on the result of (d)
 +
 
 +
<math>
 +
\lambda_{T}=\lambda_{0}e^{-\int_0^T \mu(t)\partial t}\\
 +
\Rightarrow \frac{\lambda_{T}}{\lambda_{0}}=e^{-\int_0^T \mu(t)\partial t}\\
 +
\Rightarrow \int_0^T \mu(t)\partial t=-ln{\frac{\lambda_{T}}{\lambda_{0}}}=ln{\frac{\lambda_{0}}{\lambda_{T}}}
 +
</math>
 +
== Solution 2: ==
  
 
a) Since <math> Y_{x} </math> is Poisson random variable, <math> E[Y_{x}]=\lambda_{x}</math>.
 
a) Since <math> Y_{x} </math> is Poisson random variable, <math> E[Y_{x}]=\lambda_{x}</math>.
Line 26: Line 49:
  
 
<math>\lambda_{x}=\lambda_{0}e^{-\int_0^x \mu(t)\partial t}</math>
 
<math>\lambda_{x}=\lambda_{0}e^{-\int_0^x \mu(t)\partial t}</math>
 +
 
(e) Based on the result of (d)
 
(e) Based on the result of (d)
  

Revision as of 22:40, 3 December 2015


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

August 2015, Part 2

Part 1 , 2

Solution 1:

a) $ Y_{x} $ is Poisson random variable, $ E[Y_{x}]=\lambda_{x} $.

(b) For Poisson r.v., $ E[Y_{x}]=Var[Y_{x}]\\ \Rightarrow Var[Y_{x}]=\lambda_{x} $

(c) The attenuation of photons obeys:

$ \frac{\partial \lambda_{x}}{\partial x}=-\mu(x)\lambda_{x} $

(d) The solution is:

$ \lambda_{x}=\lambda_{0}e^{-\int_0^x \mu(t)\partial t} $ (e) Based on the result of (d)

$ \lambda_{T}=\lambda_{0}e^{-\int_0^T \mu(t)\partial t}\\ \Rightarrow \frac{\lambda_{T}}{\lambda_{0}}=e^{-\int_0^T \mu(t)\partial t}\\ \Rightarrow \int_0^T \mu(t)\partial t=-ln{\frac{\lambda_{T}}{\lambda_{0}}}=ln{\frac{\lambda_{0}}{\lambda_{T}}} $

Solution 2:

a) Since $ Y_{x} $ is Poisson random variable, $ E[Y_{x}]=\lambda_{x} $.

(b) For Poisson r.v., $ E[Y_{x}]=Var[Y_{x}]\\ \Rightarrow Var[Y_{x}]=\lambda_{x} $

(c) The attenuation of photons obeys:

$ \frac{\partial \lambda_{x}}{\partial x}=-\mu(x)\lambda_{x} $

(d) The solution is:

$ \lambda_{x}=\lambda_{0}e^{-\int_0^x \mu(t)\partial t} $

(e) Based on the result of (d)

$ \lambda_{T}=\lambda_{0}e^{-\int_0^T \mu(t)\partial t}\\ \Rightarrow \frac{\lambda_{T}}{\lambda_{0}}=e^{-\int_0^T \mu(t)\partial t}\\ \Rightarrow \int_0^T \mu(t)\partial t=-ln{\frac{\lambda_{T}}{\lambda_{0}}}=ln{\frac{\lambda_{0}}{\lambda_{T}}} $


Back to ECE QE page:

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010