(New page: 4. Give an example of a periodic function (either CT or DT) and demonstrate that this function is periodic. Give an example of a non-periodic function (either CT or DT) and demonstrate ...)
 
Line 29: Line 29:
 
<math>\,\!f(t)=2x+5</math>
 
<math>\,\!f(t)=2x+5</math>
  
<math>f(t)=\frac{2x+5}{4-x}</math>
+
<math>f(t)=\frac{2x^3+5}{4^x-x}</math>
 +
 
 +
<math>\,\!f(t)=log(x)+e^{x+2}</math>
 +
 
 +
any power, exponential or logarithmic function, without a periodic portion, are non-periodic as well.

Revision as of 12:26, 4 September 2008


4. Give an example of a periodic function (either CT or DT) and demonstrate that this function is periodic. Give an example of a non-periodic function (either CT or DT) and demonstrate that this function is not periodic. Post your answers on Rhea.


Periodic and Non-Periodic functions

Definition

A function is defined as periodic if it can be moved along the x axis to a place where it exactly matches its original form. In mathematical terms, x(t) is periodic if and only if:

$ \,\! x(t+T)=x(t) $

Examples of periodic and non-periodic functions

Periodic examples:Basically any trigonometric function:

$ \,\!cos(t)=cos(t+2\pi) $

$ \,\!sin(t)=sin(t+4\pi) $

also, any square, triangle, or sawtooth waves are periodic

Non-Periodic examples:

any algebraic function:

$ \,\!f(t)=2x+5 $

$ f(t)=\frac{2x^3+5}{4^x-x} $

$ \,\!f(t)=log(x)+e^{x+2} $

any power, exponential or logarithmic function, without a periodic portion, are non-periodic as well.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett