(Created page with "Category:ECE301 Category:ECE438 Category:ECE438Fall2013Boutin Category:Problem_solving Category:Z-transform Category:Inverse_z-transform <center><...") |
|||
Line 80: | Line 80: | ||
<math>X(z) = \frac{1}{2} \sum_{n=-\infty}^{+\infty} u[-k]2^{k}z^{-k} </math> | <math>X(z) = \frac{1}{2} \sum_{n=-\infty}^{+\infty} u[-k]2^{k}z^{-k} </math> | ||
− | By comparison with the | + | By comparison with the [[Info_z-transform|z-transform]] formula, |
<span class="texhtml">''x''[''n''] = 2<sup>''n'' − 1</sup>''u''[ − ''n'']</span> | <span class="texhtml">''x''[''n''] = 2<sup>''n'' − 1</sup>''u''[ − ''n'']</span> | ||
:<span style="color:blue"> Looks good! -pm </span> | :<span style="color:blue"> Looks good! -pm </span> | ||
+ | |||
+ | ---- | ||
+ | === Answer 4 === | ||
+ | |||
+ | <math>X(z) = \frac{1}{2-z} = \frac{1}{2} \frac{1}{1-\frac{z}{2}} = \frac{1}{2} \sum_{n=-\infty}^{+\infty} u[n] (\frac{z}{2})^n = \frac{1}{2} \sum_{n=-\infty}^{+\infty} u[-k]2^{k}z^{-k} = 2^{n − 1} u [ − n]</math> | ||
+ | |||
+ | :<span style="color:red"> Domain confusion: you started out computing a function of 'k', but along the way it became a function of 'n'. While the final answer is correct, your explanation is not 100% correct. -pm </span> |
Latest revision as of 21:14, 19 April 2015
Practice Question on "Digital Signal Processing"
Topic: Computing an inverse z-transform
Question
Compute the inverse z-transform of
$ X(z) =\frac{1}{2-z}, \quad \text{ROC} \quad |z|<2 $.
(Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
$ X(z) = \frac{1}{2-z} $
$ X(z) = \frac{1}{2} \frac{1}{1-\frac{z}{2}} $
$ X(z) = \frac{1}{2} \frac{1-\left( \frac{z}{2} \right) ^n}{1- \frac{z}{2}} $ $ , \quad \text{As n goes to} \quad \infty \quad \text{since} \quad |z|<2 $ (*)
$ X(z) = \frac{1}{2} \sum_{n=0}^{\infty} \left( \frac{z}{2} \right)^n $
$ X(z) = \frac{1}{2} \sum_{n=-\infty}^{0} \left( \frac{1}{2} \right)^{-n} z^{-n} $
$ X(z) = \frac{1}{2} \sum_{n=-\infty}^{\infty} \left(\frac{1}{2} \right)^{-n} u[-n] z^{-n} $ $ , \quad \text{By comparing with DTFT equation, we get} \quad $
$ x[n] = \frac{1}{2} \times \frac{1}{3}^{-n} u[-n] $
$ x[n] = \left( \frac{1}{2} \right) ^{-n+1} u[-n] $
- Grader's comment: Correct Answer
- * This line is incorrect. The left-hand-side does not depend on 'n', so you cannot have your right-hand-side depend on 'n'. Note that, in the following lines, 'n' is the summation index in the right-hand-side (a "dummy" index"), so that is fine. -pm
Answer 2
$ X(z) = \frac{1}{2-z} $
$ =\frac{1}{2}\frac{1}{1-\frac{z}{2}} $
$ \frac{1}{2}\sum_{n=-\infty}^{\infty} u[n](\frac{z}{2})^n $
let n=-k
$ X(z)=\frac{1}{2} \sum_{k=-\infty}^{\infty} u[-k]2^k z^{-k} $
by comparison to inverse z-transform formula,
x[n] = 2 − 1 + ku[ − k]
- Grader's comment: Right-hand-side is a function of 'k' , but left-hand-side is a function of 'n'. This can't be correct...
Answer 3
$ X(z) = \frac{1}{2-z} = \frac{1}{2} \frac{1}{1-\frac{z}{2}} $
$ X(z) = \frac{1}{2} \sum_{n=-\infty}^{+\infty} u[n] (\frac{z}{2})^n $
Let n = -k
$ X(z) = \frac{1}{2} \sum_{n=-\infty}^{+\infty} u[-k]2^{k}z^{-k} $
By comparison with the z-transform formula,
x[n] = 2n − 1u[ − n]
- Looks good! -pm
Answer 4
$ X(z) = \frac{1}{2-z} = \frac{1}{2} \frac{1}{1-\frac{z}{2}} = \frac{1}{2} \sum_{n=-\infty}^{+\infty} u[n] (\frac{z}{2})^n = \frac{1}{2} \sum_{n=-\infty}^{+\infty} u[-k]2^{k}z^{-k} = 2^{n − 1} u [ − n] $
- Domain confusion: you started out computing a function of 'k', but along the way it became a function of 'n'. While the final answer is correct, your explanation is not 100% correct. -pm