Line 26: Line 26:
 
'''(b)'''Find the conditional probability mass function (pmf) of <math class="inline">\mathbf{X}</math>  conditional on the event <math class="inline">\left\{ \mathbf{Z}=n\right\}</math>  . Identify the type of pmf that this is, and fully specify its parameters.
 
'''(b)'''Find the conditional probability mass function (pmf) of <math class="inline">\mathbf{X}</math>  conditional on the event <math class="inline">\left\{ \mathbf{Z}=n\right\}</math>  . Identify the type of pmf that this is, and fully specify its parameters.
  
 +
----
 +
==Share and discuss your solutions below.==
 +
----
 +
==Solution 1==
 
'''Note'''
 
'''Note'''
  
 
This problem is identical to the example: [[ECE 600 Exams Addition of two independent Poisson random variables|Addition of two independent Poisson random variables]].
 
This problem is identical to the example: [[ECE 600 Exams Addition of two independent Poisson random variables|Addition of two independent Poisson random variables]].
 +
 +
 +
----

Latest revision as of 16:42, 13 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2001



2. (25 Points)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be independent Poisson random variables with mean $ \lambda $ and $ \mu $ , respectively. Let $ \mathbf{Z} $ be a new random variable defined as $ \mathbf{Z}=\mathbf{X}+\mathbf{Y}. $

(a) Find the probability mass function (pmf) of $ \mathbf{Z} $ .

(b)Find the conditional probability mass function (pmf) of $ \mathbf{X} $ conditional on the event $ \left\{ \mathbf{Z}=n\right\} $ . Identify the type of pmf that this is, and fully specify its parameters.


Share and discuss your solutions below.


Solution 1

Note

This problem is identical to the example: Addition of two independent Poisson random variables.



Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010