(Created page with "Category:ECE Category:QE Category:CNSIP Category:problem solving Category:random variables <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qu...")
 
 
Line 24: Line 24:
 
Let <math class="inline">\mathbf{X}</math>  be a random variable with absolutely continuous probability distribution function. Show that for any <math class="inline">\alpha>0</math>  and any real number <math class="inline">s</math> :<math class="inline">P\left(e^{s\mathbf{X}}\geq\alpha\right)\leq\frac{\phi\left(s\right)}{\alpha}</math> where <math class="inline">\phi\left(s\right)</math>  is the moment generating function, <math class="inline">\phi\left(s\right)=E\left[e^{s\mathbf{X}}\right]</math> . Note: <math class="inline">\phi\left(s\right)</math>  can be related to the Laplace Transform of <math class="inline">f_{\mathbf{X}}\left(x\right)</math> .
 
Let <math class="inline">\mathbf{X}</math>  be a random variable with absolutely continuous probability distribution function. Show that for any <math class="inline">\alpha>0</math>  and any real number <math class="inline">s</math> :<math class="inline">P\left(e^{s\mathbf{X}}\geq\alpha\right)\leq\frac{\phi\left(s\right)}{\alpha}</math> where <math class="inline">\phi\left(s\right)</math>  is the moment generating function, <math class="inline">\phi\left(s\right)=E\left[e^{s\mathbf{X}}\right]</math> . Note: <math class="inline">\phi\left(s\right)</math>  can be related to the Laplace Transform of <math class="inline">f_{\mathbf{X}}\left(x\right)</math> .
  
 +
----
 +
==Share and discuss your solutions below.==
 +
----
 +
==Solution 1==
 
Note
 
Note
  
Line 35: Line 39:
  
 
<math class="inline">\therefore\; P\left(\left\{ e^{s\mathbf{X}}\geq\alpha\right\} \right)\leq\frac{\phi\left(s\right)}{\alpha}.</math>
 
<math class="inline">\therefore\; P\left(\left\{ e^{s\mathbf{X}}\geq\alpha\right\} \right)\leq\frac{\phi\left(s\right)}{\alpha}.</math>
 +
----

Latest revision as of 16:39, 13 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

January 2002



5. (20 pts)

Let $ \mathbf{X} $ be a random variable with absolutely continuous probability distribution function. Show that for any $ \alpha>0 $ and any real number $ s $ :$ P\left(e^{s\mathbf{X}}\geq\alpha\right)\leq\frac{\phi\left(s\right)}{\alpha} $ where $ \phi\left(s\right) $ is the moment generating function, $ \phi\left(s\right)=E\left[e^{s\mathbf{X}}\right] $ . Note: $ \phi\left(s\right) $ can be related to the Laplace Transform of $ f_{\mathbf{X}}\left(x\right) $ .


Share and discuss your solutions below.


Solution 1

Note

This is similar to the proof of Chebyshev Inequality.

$ g_{1}\left(x\right)=1_{\left(x\right)_{\left\{ r:e^{sx}\geq\alpha\right\} }},\; g_{2}\left(x\right)=\frac{e^{sx}}{\alpha}. $

Pasted19.png

$ E\left[g_{2}\left(\mathbf{X}\right)-g_{1}\left(\mathbf{X}\right)\right]=E\left[g_{2}\left(\mathbf{X}\right)\right]-E\left[g_{1}\left(\mathbf{X}\right)\right]=\frac{\phi\left(s\right)}{\alpha}-P\left(\left\{ e^{s\mathbf{X}}\geq\alpha\right\} \right)\geq0. $

$ \therefore\; P\left(\left\{ e^{s\mathbf{X}}\geq\alpha\right\} \right)\leq\frac{\phi\left(s\right)}{\alpha}. $


Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010