Line 34: | Line 34: | ||
d) Find <math> P(Y=kX)\ </math>. | d) Find <math> P(Y=kX)\ </math>. | ||
− | |||
− | |||
− | |||
− | |||
− | + | :'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.1|answers and discussions]]''' | |
− | + | ---- | |
− | + | '''2. (25 Points)''' | |
− | + | Let <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math> be a sequence of binomially distributed random variables, with the <math class="inline">n</math> -th random variable <math class="inline">\mathbf{X}_{n}</math> having pmf <math class="inline">p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c} | |
− | + | n\\ | |
+ | k | ||
+ | \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right).</math> | ||
− | + | Show that, if the <math class="inline">p_{n}</math> have the property that <math class="inline">np_{n}\rightarrow\lambda</math> as <math class="inline">n\rightarrow\infty</math> , where <math class="inline">\lambda</math> is a positive constant, then the sequence <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math> converges in distribution to a Poisson random variable <math class="inline">\mathbf{X}</math> with mean <math class="inline">\lambda</math> . | |
− | + | ||
− | + | '''Hint:''' | |
− | + | You may find the following fact useful: | |
− | + | <math class="inline">\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}.</math> | |
− | + | ||
− | + | :'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.2|answers and discussions]]'' | |
− | + | ||
− | : | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
---- | ---- | ||
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] |
Revision as of 09:45, 10 March 2015
Communication, Networking, Signal and Image Processing (CS)
Question 1: Probability and Random Processes
August 2007
Question
X and Y are iid random variable with
$ P(X=i) = P(Y=i) = \frac {1}{2^i}\ ,i = 1,2,3,... $
a) Find $ P(min(X,Y)=k)\ $.
b) Find $ P(X=Y)\ $.
c) Find $ P(Y>X)\ $.
d) Find $ P(Y=kX)\ $.
- Click here to view student answers and discussions
2. (25 Points)
Let $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ be a sequence of binomially distributed random variables, with the $ n $ -th random variable $ \mathbf{X}_{n} $ having pmf $ p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c} n\\ k \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right). $
Show that, if the $ p_{n} $ have the property that $ np_{n}\rightarrow\lambda $ as $ n\rightarrow\infty $ , where $ \lambda $ is a positive constant, then the sequence $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ converges in distribution to a Poisson random variable $ \mathbf{X} $ with mean $ \lambda $ .
Hint:
You may find the following fact useful:
$ \lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}. $
- 'Click here to view student answers and discussions