Line 22: | Line 22: | ||
---- | ---- | ||
==Question== | ==Question== | ||
− | |||
− | + | '''Problem 1 (30 points)''' | |
+ | |||
+ | '''i)''' | ||
+ | |||
+ | Let <math class="inline">\mathbf{X}</math> and <math class="inline">\mathbf{Y}</math> be jointly Gaussian (normal) distributed random variables with mean <math class="inline">0</math> , <math class="inline">E\left[\mathbf{X}^{2}\right]=E\left[\mathbf{Y}^{2}\right]=\sigma^{2}</math> and <math class="inline">E\left[\mathbf{XY}\right]=\rho\sigma^{2}</math> with <math class="inline">\left|\rho\right|<1</math> . Find the joint characteristic function <math class="inline">E\left[e^{i\left(h_{1}\mathbf{X}+h_{2}\mathbf{Y}\right)}\right]</math> . | ||
+ | |||
+ | '''ii)''' | ||
+ | |||
+ | Let <math class="inline">\mathbf{X}</math> and <math class="inline">\mathbf{Y}</math> be two jointly Gaussian distributed r.v's with identical means and variances but are not necessarily independent. Show that the r.v. <math class="inline">\mathbf{V}=\mathbf{X}+\mathbf{Y}</math> is independeent of the r.v. <math class="inline">\mathbf{W}=\mathbf{X}-\mathbf{Y}</math> . Is the same answer true for <math class="inline">\mathbf{A}=f\left(\mathbf{V}\right)</math> and <math class="inline">\mathbf{B}=g\left(\mathbf{W}\right)</math> where <math class="inline">f\left(\cdot\right)</math> and <math class="inline">g\left(\cdot\right)</math> are suitable functions such that <math class="inline">E\left[f\left(\mathbf{V}\right)\right]<\infty</math> and <math class="inline">E\left[g\left(\mathbf{W}\right)\right]<\infty</math> . Given reasons. | ||
+ | |||
+ | '''iii)''' | ||
+ | |||
+ | Let <math class="inline">\mathbf{X}</math> and <math class="inline">\mathbf{Y}</math> be independent <math class="inline">N\left(m,1\right)</math> random variables. Show that the sample mean <math class="inline">\mathbf{M}=\frac{\mathbf{X}+\mathbf{Y}}{2}</math> is independent of the sample variance <math class="inline">\mathbf{V}=\left(\mathbf{X}-\mathbf{M}\right)^{2}+\left(\mathbf{Y}-\mathbf{M}\right)^{2}</math> . | ||
:'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.1|answers and discussions]]''' | :'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.1|answers and discussions]]''' | ||
---- | ---- | ||
− | ''' | + | '''Problem 2 (35 points)''' |
− | + | Consider the stochastic process <math class="inline">\left\{ \mathbf{X}_{n}\right\}</math> defined by: <math class="inline">\mathbf{X}_{n+1}=a\mathbf{X}_{n}+b\mathbf{W}_{n} where \mathbf{X}_{0}\sim N\left(0,\sigma^{2}\right)</math> and <math class="inline">\left\{ \mathbf{W}_{n}\right\}</math> is an i.i.d. <math class="inline">N\left(0,1\right)</math> sequence of r.v's independent of <math class="inline">\mathbf{X}_{0}</math> . | |
+ | |||
+ | '''i)''' | ||
+ | |||
+ | Show that if <math class="inline">R_{k}=cov\left(\mathbf{X}_{k},\mathbf{X}_{k}\right)</math> converges as <math class="inline">k\rightarrow\infty</math> , then <math class="inline">\left\{ \mathbf{X}_{k}\right\}</math> converges to a w.s.s. process. | ||
+ | |||
+ | '''ii)''' | ||
+ | |||
+ | Show that if <math class="inline">\sigma^{2}</math> is chosen appropriately and <math class="inline">\left|a\right|<1</math> , then <math class="inline">\left\{ \mathbf{X}_{k}\right\}</math> will be a stationary process for all <math class="inline">k</math> . | ||
+ | |||
+ | '''iii)''' | ||
+ | |||
+ | If <math class="inline">\left|a\right|>1</math> , show that the variance of the process <math class="inline">\left\{ \mathbf{X}_{k}\right\}</math> diverges but <math class="inline">\frac{\mathbf{X}_{k}}{\left|a\right|^{k}}</math> converges in the mean square. | ||
:'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.2|answers and discussions]]''' | :'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.2|answers and discussions]]''' | ||
---- | ---- | ||
− | ''' | + | '''Problem 3 (35 points)''' |
− | + | '''i)''' | |
− | : | + | Catastrophes occur at times <math class="inline">\mathbf{T}_{1},\mathbf{T}_{2},\cdots</math>, where <math class="inline">\mathbf{T}_{i}=\sum_{k=1}^{i}\mathbf{X}_{k}</math> where the <math class="inline">\mathbf{X}_{k}</math> 's are independent, identically distributed positive random variables. Let <math class="inline">\mathbf{N}_{t}=\max\left\{ n:\mathbf{T}_{n}\leq t\right\}</math> be the number of catastrophes which have occurred by time <math class="inline">t</math> . Show that if <math class="inline">E\left[\mathbf{X}_{1}\right]<\infty</math> then <math class="inline">\mathbf{N}_{t}\rightarrow\infty</math> almost surely (a.s.) and <math class="inline">\frac{\mathbf{N}_{t}}{t}\rightarrow\frac{1}{E\left[\mathbf{X}_{1}\right]}</math> as <math class="inline">t\rightarrow\infty</math> a.s. |
− | + | ||
− | + | ||
− | + | '''ii)''' | |
− | :'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1. | + | Let <math class="inline">\left\{ \mathbf{X}_{t},t\geq0\right\}</math> be a stochastic process defined by: <math class="inline">\mathbf{X}_{t}=\sqrt{2}\cos\left(2\pi\xi t\right)</math> where <math class="inline">\xi</math> is a <math class="inline">N\left(0,1\right)</math> random variable. Show that as <math class="inline">t\rightarrow\infty,\;\left\{ \mathbf{X}_{t}\right\}</math> converges to a wide sense stationary process. Find the spectral density of the limit process. |
+ | |||
+ | '''Hint:''' | ||
+ | |||
+ | Use the fact that the characteristic function of a <math class="inline">N\left(0,1\right)</math> r.v. is given by <math class="inline">E\left[e^{ih\mathbf{X}}\right]=e^{-\frac{h^{2}}{2}}</math> . | ||
+ | |||
+ | :'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.3|answers and discussions]]''' | ||
+ | ---- | ||
---- | ---- | ||
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] |
Revision as of 23:37, 9 March 2015
Communication, Networking, Signal and Image Processing (CS)
Question 1: Probability and Random Processes
August 2003
Question
Problem 1 (30 points)
i)
Let $ \mathbf{X} $ and $ \mathbf{Y} $ be jointly Gaussian (normal) distributed random variables with mean $ 0 $ , $ E\left[\mathbf{X}^{2}\right]=E\left[\mathbf{Y}^{2}\right]=\sigma^{2} $ and $ E\left[\mathbf{XY}\right]=\rho\sigma^{2} $ with $ \left|\rho\right|<1 $ . Find the joint characteristic function $ E\left[e^{i\left(h_{1}\mathbf{X}+h_{2}\mathbf{Y}\right)}\right] $ .
ii)
Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two jointly Gaussian distributed r.v's with identical means and variances but are not necessarily independent. Show that the r.v. $ \mathbf{V}=\mathbf{X}+\mathbf{Y} $ is independeent of the r.v. $ \mathbf{W}=\mathbf{X}-\mathbf{Y} $ . Is the same answer true for $ \mathbf{A}=f\left(\mathbf{V}\right) $ and $ \mathbf{B}=g\left(\mathbf{W}\right) $ where $ f\left(\cdot\right) $ and $ g\left(\cdot\right) $ are suitable functions such that $ E\left[f\left(\mathbf{V}\right)\right]<\infty $ and $ E\left[g\left(\mathbf{W}\right)\right]<\infty $ . Given reasons.
iii)
Let $ \mathbf{X} $ and $ \mathbf{Y} $ be independent $ N\left(m,1\right) $ random variables. Show that the sample mean $ \mathbf{M}=\frac{\mathbf{X}+\mathbf{Y}}{2} $ is independent of the sample variance $ \mathbf{V}=\left(\mathbf{X}-\mathbf{M}\right)^{2}+\left(\mathbf{Y}-\mathbf{M}\right)^{2} $ .
- Click here to view student answers and discussions
Problem 2 (35 points)
Consider the stochastic process $ \left\{ \mathbf{X}_{n}\right\} $ defined by: $ \mathbf{X}_{n+1}=a\mathbf{X}_{n}+b\mathbf{W}_{n} where \mathbf{X}_{0}\sim N\left(0,\sigma^{2}\right) $ and $ \left\{ \mathbf{W}_{n}\right\} $ is an i.i.d. $ N\left(0,1\right) $ sequence of r.v's independent of $ \mathbf{X}_{0} $ .
i)
Show that if $ R_{k}=cov\left(\mathbf{X}_{k},\mathbf{X}_{k}\right) $ converges as $ k\rightarrow\infty $ , then $ \left\{ \mathbf{X}_{k}\right\} $ converges to a w.s.s. process.
ii)
Show that if $ \sigma^{2} $ is chosen appropriately and $ \left|a\right|<1 $ , then $ \left\{ \mathbf{X}_{k}\right\} $ will be a stationary process for all $ k $ .
iii)
If $ \left|a\right|>1 $ , show that the variance of the process $ \left\{ \mathbf{X}_{k}\right\} $ diverges but $ \frac{\mathbf{X}_{k}}{\left|a\right|^{k}} $ converges in the mean square.
- Click here to view student answers and discussions
Problem 3 (35 points)
i)
Catastrophes occur at times $ \mathbf{T}_{1},\mathbf{T}_{2},\cdots $, where $ \mathbf{T}_{i}=\sum_{k=1}^{i}\mathbf{X}_{k} $ where the $ \mathbf{X}_{k} $ 's are independent, identically distributed positive random variables. Let $ \mathbf{N}_{t}=\max\left\{ n:\mathbf{T}_{n}\leq t\right\} $ be the number of catastrophes which have occurred by time $ t $ . Show that if $ E\left[\mathbf{X}_{1}\right]<\infty $ then $ \mathbf{N}_{t}\rightarrow\infty $ almost surely (a.s.) and $ \frac{\mathbf{N}_{t}}{t}\rightarrow\frac{1}{E\left[\mathbf{X}_{1}\right]} $ as $ t\rightarrow\infty $ a.s.
ii)
Let $ \left\{ \mathbf{X}_{t},t\geq0\right\} $ be a stochastic process defined by: $ \mathbf{X}_{t}=\sqrt{2}\cos\left(2\pi\xi t\right) $ where $ \xi $ is a $ N\left(0,1\right) $ random variable. Show that as $ t\rightarrow\infty,\;\left\{ \mathbf{X}_{t}\right\} $ converges to a wide sense stationary process. Find the spectral density of the limit process.
Hint:
Use the fact that the characteristic function of a $ N\left(0,1\right) $ r.v. is given by $ E\left[e^{ih\mathbf{X}}\right]=e^{-\frac{h^{2}}{2}} $ .
- Click here to view student answers and discussions