(Created page with "'''2. (25 Points)''' Let <math class="inline">\mathbf{X}</math> and <math class="inline">\mathbf{Y}</math> be independent Poisson random variables with mean <math class="in...")
(No difference)

Revision as of 00:28, 9 March 2015

2. (25 Points)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be independent Poisson random variables with mean $ \lambda $ and $ \mu $ , respectively. Let $ \mathbf{Z} $ be a new random variable defined as $ \mathbf{Z}=\mathbf{X}+\mathbf{Y}. $

(a) Find the probability mass function (pmf) of $ \mathbf{Z} $ .

(b)Find the conditional probability mass function (pmf) of $ \mathbf{X} $ conditional on the event $ \left\{ \mathbf{Z}=n\right\} $ . Identify the type of pmf that this is, and fully specify its parameters.

Note

This problem is identical to the example: Addition of two independent Poisson random variables.

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch