(Created page with "Category:Formulas Category:integral <center><font size= 4> '''Collective Table of Formulas''' </font size> '''Table_of_indefinite_...")
(No difference)

Revision as of 16:23, 26 February 2015


Collective Table of Formulas

Indefinite Integrals with hyperbolic tangent (th x)

click here for more formulas


$ \int th ax dx=\dfrac{\ln ch ax}{a} +C $
$ \int th^{2} ax dx=x-\dfrac{th ax}{a} +C $
$ \int th^{3} ax dx=\dfrac{1}{a}\dfrac{\ln ch ax}{a}-\dfrac{th^{2} ax}{2a} +C $
$ \int\dfrac{th^{n} ax}{ch^{2} ax} dx=\dfrac{th^{n+1} ax}{(n+1)a} +C $
$ \int\dfrac{dx}{th ax ch^{2} ax} dx=\dfrac{1}{a}\ln th ax +C $
$ \int\dfrac{dx}{th ax} dx=\dfrac{1}{a}\ln sh ax +C $
$ \int x th ax dx=\dfrac{1}{a^{2}}\biggl\{\dfrac{(ax)^{3}}{3}-\dfrac{(ax)^{5}}{15}+\dfrac{2(ax)^{7}}{105}\cdots+\dfrac{(-1)^{n-1}2^{2n}(2^{2n}-1)B_{n}(ax)^{2n+1}}{(2n+1)|}\biggl\} +C $
$ \int x th^{2} ax dx=\dfrac{x^{2}}{2}-\dfrac{x th ax}{a}+\dfrac{1}{a^{2}}\ln ch ax +C $
$ \int\dfrac{th ax}{x} dx=\biggl\{ ax-\dfrac{(ax)^{3}}{9}+\dfrac{2(ax)^{5}}{75}-\cdots+\dfrac{(-1)^{n-1}2^{2n}(2^{2n}-1)B_{n}(ax)^{2n-1}}{(2n-1)(2n)!}\biggl\} +C $
$ \int\dfrac{dx}{p+q th ax}=\dfrac{px}{p^{2}-q^{2}}-\dfrac{q}{a(p^{2}-q^{2})}\ln(q sh ax+p ch ax) +C $
$ \int th^{n} ax dx=-\dfrac{th^{n+1} ax}{a(n-1)}+ \int th^{n-2} ax dx $


Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang