Line 21: Line 21:
 
| align="right" style="padding-right: 1em;" | [[signal_energy_CT|(info)]] CT signal energy ||<math>E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt </math>
 
| align="right" style="padding-right: 1em;" | [[signal_energy_CT|(info)]] CT signal energy ||<math>E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[signal_power_CT|(info)]] CT signal average power ||<math>P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt </math>
+
| align="right" style="padding-right: 1em;" | [[signal_power_CT|(info)]] CT signal (average) power ||<math>P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt </math>
 
|-
 
|-
 
! colspan="2" style="background: #eee;" |  Metrics for Discrete-time Signals
 
! colspan="2" style="background: #eee;" |  Metrics for Discrete-time Signals

Revision as of 13:07, 24 February 2015


keywords: energy, power, signal

Collective Table of Formulas

Signal Metrics Definitions and Formulas

(used in ECE301 and ECE438)


Metrics for Continuous-time Signals
(info) CT signal energy $ E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt $
(info) CT signal (average) power $ P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt $
Metrics for Discrete-time Signals
DT signal energy $ E_\infty=\sum_{n=-\infty}^\infty | x[n] |^2 $
DT signal average power $ P_\infty = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \left | x [n] \right |^2 \, $

Back to Collective Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood