(Created page with "Category:ECE Category:QE Category:CNSIP Category:problem solving Category:automatic control Category:optimization =QE2013_AC-3_ECE580-4= :QE2013_AC...") |
|||
Line 18: | Line 18: | ||
<math>\therefore \ Constraint: 2u(0) + 2u(1) + 2u(2) = 6 </math> | <math>\therefore \ Constraint: 2u(0) + 2u(1) + 2u(2) = 6 </math> | ||
+ | Let <math>f(u) = u^2(0) + u^2(1) + u^2(2), h(u) = 2u(0) + 2u(1) + 2u(2) - 6 </math> | ||
+ | |||
+ | Let u* be a local minimizer. Lagrange theorem says there exists a λ such that: | ||
+ | |||
+ | <math>\nabla f(u*) + \lambda \nabla h(u*) = 0 \\ | ||
+ | h(u*) = 0 </math> | ||
[[ QE2013 AC-3 ECE580|Back to QE2013 AC-3 ECE580]] | [[ QE2013 AC-3 ECE580|Back to QE2013 AC-3 ECE580]] |
Revision as of 09:47, 27 January 2015
QE2013_AC-3_ECE580-4
(i)
Solution:
$ x(3) = x(2) + 2u(2) = x(1) + 2u(1) + 2u(2) = x(0) + 2u(0) + 2u(1) + 2u(2) $
$ \because x(0) = 3, x(3) = 9 $
$ \therefore \ Constraint: 2u(0) + 2u(1) + 2u(2) = 6 $
Let $ f(u) = u^2(0) + u^2(1) + u^2(2), h(u) = 2u(0) + 2u(1) + 2u(2) - 6 $
Let u* be a local minimizer. Lagrange theorem says there exists a λ such that:
$ \nabla f(u*) + \lambda \nabla h(u*) = 0 \\ h(u*) = 0 $ Back to QE2013 AC-3 ECE580