Line 14: | Line 14: | ||
To remove absolute values, each variable is separated into a positive component and a negative component. For <math>x_1</math> for example: | To remove absolute values, each variable is separated into a positive component and a negative component. For <math>x_1</math> for example: | ||
− | <math>x_1 = x_1^+ - x_1^-, | + | <math>x_1 = x_1^+ - x_1^-, \ \ \ \ x_1^+ ,x_1^- \ge 0</math> |
Then <math>|x_1| = x_1^+ + x_1^- </math> | Then <math>|x_1| = x_1^+ + x_1^- </math> |
Revision as of 15:09, 23 January 2015
QE2013_AC-3_ECE580-3
(i)
Solution:
To remove absolute values, each variable is separated into a positive component and a negative component. For $ x_1 $ for example:
$ x_1 = x_1^+ - x_1^-, \ \ \ \ x_1^+ ,x_1^- \ge 0 $
Then $ |x_1| = x_1^+ + x_1^- $
Therefore the given problem can be converted into a linear programming problem:
$ maximize -x_1^+ -x_1^- -x_2^+ -x_2^- -x_3^+ -x_3^- \\ subject\ to \\ \begin{bmatrix} 1 & -1 & 1 & -1 & -1 & 1 \\ 0 & 0 & -1& 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1^+ \\ x_1^- \\ x_2^+ \\ x_2^- \\ x_3^+ \\ x_3^- \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \\ x_1^+ ,x_1^- ,x_2^+ ,x_2^- ,x_3^+ ,x_3^- \ge 0 $
(ii)
Solution:
The schema will be destroyed if and only if the 2nd or 4th symbol change. Equivalently, the schema will not be destroyed if and only if both 2nd and the 4th symbols stay the same. As those events are independent:
$ P(Not\ destroyed) = P(2nd\ symbol\ does\ not\ change) \times P(4th\ symbol\ does\ not\ change) $
$ = (1-0.1)\times(1-0.1) = 0.81 $
Therefore
$ P(destroyed) = 1 - 0.81 = 0.19 $