Line 67: | Line 67: | ||
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi r\rho} \left | \frac{\partial (r,z)}{\partial (x,y)} \right \vert dxdy \ \ (**) \\ | &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi r\rho} \left | \frac{\partial (r,z)}{\partial (x,y)} \right \vert dxdy \ \ (**) \\ | ||
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi (x\rho\cos(\theta) + y\rho\sin(\theta))}dxdy \\ | &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi (x\rho\cos(\theta) + y\rho\sin(\theta))}dxdy \\ | ||
− | &= F(\rho\cos( | + | &= F(\rho\cos(\theta),\rho\sin(\theta)) |
\end{align} | \end{align} | ||
</math> | </math> | ||
Line 82: | Line 82: | ||
<math>**</math> Continue the changing of variables with the Jacobian. Note:<br /> | <math>**</math> Continue the changing of variables with the Jacobian. Note:<br /> | ||
− | + | <math> | |
+ | drdz = \left | \frac{\partial (r,z)}{\partial (x,y)} \right \vert dxdy | ||
+ | </math> | ||
+ | <br /> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
− | \left | \frac{\partial (r,z)}{\partial (x,y)} \right \vert &= | + | \left | \frac{\partial (r,z)}{\partial (x,y)} \right \vert &= det \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{bmatrix} \\ |
− | \end{end} | + | &= det \begin{bmatrix} \frac{\partial (x\cos(\theta)+y\sin(\theta))}{\partial x} & \frac{\partial (x\cos(\theta)+y\sin(\theta))}{\partial y} \\ |
+ | \frac{\partial (-x\sin(\theta)+y\cos(\theta))}{\partial x} & \frac{\partial (-x\sin(\theta)+y\cos(\theta))}{\partial y} \end{bmatrix} \\ | ||
+ | &= det \begin{bmatrix} \cos\theta & \sin\theta \\ | ||
+ | -\sin\theta & \cos\theta \end{bmatrix} \\ | ||
+ | &= \cos^2\theta + \sin^2\theta \\ | ||
+ | &=1 | ||
+ | \end{align} | ||
</math> | </math> | ||
Revision as of 18:31, 20 December 2014
Fourier Slice Theorem (FST)
A slecture by ECE student Sahil Sanghani
Partly based on the ECE 637 material of Professor Bouman.
Introduction
The Fourier Slice Theorem elucidates how the projections measured by a medical imaging device can be used to reconstruct the object being scanned. From those projections a Continuous Time Fourier Transform (CTFT) is taken. Then according to the theorem, an inverse Continuous Space Fourier Transform (CSFT) can be used to form the original object,$ f(x,y) $. There are two proofs that will be demonstrated.
Fourier Slice Theorem
Given:
$ (x,y): $= the coordinates of the system the original object resides in (as seen in Figure 1)
$ (r,z): $= the coordinates of the system the projection resides in rotated at an angle $ \theta $ relative to the object's coordinate system (as seen in Figure 2)
$ \rho: $= the frequency variable corresponding to $ r $
$ u: $= the frequency variable corresponding to $ x $
$ v: $= the frequency variable corresponding to $ y $
The Fourier Slice Theorem (FST) states that if
$ \begin{align} P_{\theta}({\rho}) &= CTFT \{p_\theta(r)\} \\ F(u,v) &= CSFT\{f(x,y)\} \end{align} $
Then
$ P_{\theta}({\rho}) = F(\rho\cos(\theta),\rho\sin(\theta)) \ $
This means that $ P_{\theta}({\rho}) $ is $ F(u,v) $ in polar coordinates. Basically
Proof
Method 1
From the derivation of the Radon transform, we have
$ p_{\theta}(r) = \int_{-\infty}^{\infty}f(\mathbf{A_{\theta}} \begin{bmatrix} r \\ z \end{bmatrix}) dz $
$ \begin{align} \Rightarrow P_{\theta}(\rho) &= CTFT \{p_\theta(r)\}\\ &= \int_{-\infty}^{\infty} p_{\theta}(r)e^{-j2\pi r\rho}dr \\ &= \int_{-\infty}^{\infty}[\int_{-\infty}^{\infty} f(\mathbf{A_{\theta}} \begin{bmatrix}r \\ z \end{bmatrix})dz]e^{-j2\pi r\rho}dr \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mathbf{A_{\theta}} \begin{bmatrix}r \\ z \end{bmatrix})e^{-j2\pi r\rho}dzdr \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mathbf{A_{\theta}}*\mathbf{A_{-\theta}} \begin{bmatrix}x \\ y \end{bmatrix})e^{-j2\pi r\rho}dzdr \ \ (*)\\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi r\rho} \left | \frac{\partial (r,z)}{\partial (x,y)} \right \vert dxdy \ \ (**) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi (x\rho\cos(\theta) + y\rho\sin(\theta))}dxdy \\ &= F(\rho\cos(\theta),\rho\sin(\theta)) \end{align} $
$ * $ Start a change of variable where
$ \begin{bmatrix}r \\ z\end{bmatrix} = \mathbf{A_{-\theta}} \begin{bmatrix}x \\ y\end{bmatrix} $
Note that from this relationship, $ r = x\cos(\theta) + y\sin(\theta) $ and $ z = -x\sin(\theta) + y\cos(\theta) $
$ ** $ Continue the changing of variables with the Jacobian. Note:
$ drdz = \left | \frac{\partial (r,z)}{\partial (x,y)} \right \vert dxdy $
$ \begin{align} \left | \frac{\partial (r,z)}{\partial (x,y)} \right \vert &= det \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{bmatrix} \\ &= det \begin{bmatrix} \frac{\partial (x\cos(\theta)+y\sin(\theta))}{\partial x} & \frac{\partial (x\cos(\theta)+y\sin(\theta))}{\partial y} \\ \frac{\partial (-x\sin(\theta)+y\cos(\theta))}{\partial x} & \frac{\partial (-x\sin(\theta)+y\cos(\theta))}{\partial y} \end{bmatrix} \\ &= det \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \\ &= \cos^2\theta + \sin^2\theta \\ &=1 \end{align} $
Method 2
Let $ \theta = 0 $. Then notice that when $ \theta = 0 $, the $ x $ and $ r $ axes line up, as do the $ y $ and $ z $ axes. From the derivation of the Radon transform, we get the following definition equation.
$ p_{\theta}(r) = \int_{-\infty}^{\infty} f(r\cos(\theta)-z\sin(\theta),r\sin(\theta)+z\cos(\theta))dz $
$ \begin{align} p_{0}(r) &= \int_{-\infty}^{\infty} f(r\cos(0)-z\sin(0),r\sin(0)+z\cos(0))dz \\ &= \int_{-\infty}^{\infty} f(r,z)dz \\ \end{align} $
Now let's take the CTFT of both sides.
$ \begin{align} P_0(\rho) &= \int_{-\infty}^{\infty} p_0(r)e^{-j2\pi r\rho}dr \\ &= \int_{-\infty}^{\infty}[\int_{-\infty}^{\infty} f(r,z)dz]e^{-j2\pi r\rho}dr \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r,z)e^{-j2\pi r\rho}e^{-j2\pi z*0}drdz \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(x\rho + y0)}dxdy \\ &= F(\rho,0) \\ &= F(\rho\cos(0),\rho\sin(0)) \end{align} $
Since the FST holds true under $ \theta = 0 $, by the rotation property of the CSFT, the FST must hold true for any $ \theta $.
References:
[1] C. A. Bouman. ECE 637. Class Lecture. Digital Image Processing I. Faculty of Electrical Engineering, Purdue University. Spring 2013.