Line 1: | Line 1: | ||
− | + | <br> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | = [[ | + | = [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS) = |
− | = [[ECE- | + | |
+ | = [[ECE-QE CS5-2013|Question 5, August 2013]], Problem 1 = | ||
+ | |||
+ | :[[QE637_2013_Pro1|Problem 1 ]],[[QE637 2013 Pro2|Problem 2 ]] | ||
− | |||
---- | ---- | ||
− | == Solution 1: == | + | |
+ | == Solution 1: == | ||
+ | |||
a) Since | a) Since | ||
Line 23: | Line 23: | ||
we have: | we have: | ||
− | < | + | <span class="texhtml">''p''<sub>0</sub>(''e''<sup>''j''''w'''''</sup>''''') = '''''<b>X''(''e''<sup></sup>''j''μ,''e''<sup></sup>''j</b>'''''w'') | <sub>μ = 0</sub>'''</span> |
b) Similarly to a), we have: | b) Similarly to a), we have: | ||
− | < | + | <span class="texhtml">''p''<sub>1</sub>(''e''<sup>''j''''w'''''</sup>''''') = '''''<b>X''(''e''<sup></sup>''j</b>'''''w'',''e''<sup>''j''ν</sup>) | <sub>ν = 0</sub>'''</span> |
− | c) <br> | + | c) <br> <math> \sum_{n=-\infty}^{\infty} p_0(n) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n) = X(e^{j\mu}, e^{j\nu}) |_{\mu=0, \nu=0} </math> which is the DC point of the image. |
− | <math> \sum_{n=-\infty}^{\infty} p_0(n) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n) = X(e^{j\mu}, e^{j\nu}) |_{\mu=0, \nu=0} </math> | + | |
− | which is the DC point of the image. | + | |
− | d) No, it can't provide sufficient information. | + | d) No, it can't provide sufficient information. From the expression in a) and b), we see that <span class="texhtml">''p''<sub>0</sub>(''e''<sup>''j''''w'''''</sup>''''')'''''</span>'''''and <span class="texhtml" />'''''<b>p''<sub>1</sub>(''e''<sup></sup>''j</b>'''''w'') are only slices of the DSFT. It lost the information when <span class="texhtml">μ</span> and <span class="texhtml">ν</span> are not zero. A simple example would be: Let <br> <math> |
− | From the expression in a) and b), we see that < | + | |
− | A simple example would be: | + | |
− | Let <br> | + | |
− | <math> | + | |
x(m,n) = | x(m,n) = | ||
\left[ {\begin{array}{*{20}{c}} | \left[ {\begin{array}{*{20}{c}} | ||
1 ~ 2 \\ | 1 ~ 2 \\ | ||
3 ~ 4\\ | 3 ~ 4\\ | ||
− | \end{array}} \right] </math>, | + | \end{array}} \right] </math>, so<br> <math> p_0(n) =[4~6], p_1(m) = [3 ~7]^T </math>. With the above the information of the projection, the original form of the 2D signal cannot be determined. For example, <math> |
− | so<br> | + | |
− | <math> p_0(n) =[4~6], p_1(m) = [3 ~7]^T </math>. | + | |
− | With the above the information of the projection, the original form of the 2D signal cannot be determined. For example, | + | |
− | <math> | + | |
x(m,n) = | x(m,n) = | ||
\left[ {\begin{array}{*{20}{c}} | \left[ {\begin{array}{*{20}{c}} | ||
2 ~ 1 \\ | 2 ~ 1 \\ | ||
2 ~ 5\\ | 2 ~ 5\\ | ||
− | \end{array}} \right] </math> gives the same projection. | + | \end{array}} \right] </math> gives the same projection. ''' |
− | == Solution 2: == | + | == Solution 2: == |
+ | |||
+ | a) From the question, | ||
+ | |||
+ | <math>P_0(e^{j\mu}) = \sum_{n=-\infty}^{\infty}p_0(n)e^{-jn\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}\cdot1 | ||
+ | = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}e^{-jm\cdot0} = X(e^{j\mu},e^{j\cdot0}) = X(e^{j\mu},e^{j\nu})\vert_{\nu = 0}</math> | ||
+ | |||
+ | <br> b) Similar to question a), | ||
+ | |||
+ | <math>P_1(e^{j\nu}) = \sum_{m=-\infty}^{\infty}p_1(m)e^{-jm\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jm\nu}\cdot1 | ||
+ | = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\cdot0}e^{-jm\nu} = X(e^{j\cdot0},e^{j\nu}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0}</math> | ||
+ | |||
+ | c) | ||
+ | |||
+ | <math>\sum_{n = -\infty}^{\infty}p_0(n) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) | ||
+ | =\sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) e^{-jn\cdot0}e^{-jm\cdot0} = X(e^{-jn\cdot0},e^{-jm\cdot0}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0, \nu = 0}</math> | ||
+ | |||
+ | d)No. ''P''<sub>''0 ''</sub>''only ''represents the <span class="texhtml">μ</span> axis on <span class="texhtml">''X''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span>. ''P<sub>1</sub>'' only represents the <span class="texhtml">ν</span> axis on <span class="texhtml">''X''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span>. It is not enough to represent <span class="texhtml">''X''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span>. | ||
---- | ---- | ||
− | |||
− | |||
− | a) Calculate < | + | === Related Problem === |
− | b) Calculate < | + | |
+ | 1.Let <span class="texhtml">''g''(''x'',''y'') = ''s''''i''''n''''c'''''<b>(</b>'''''x'' / 2,''y'' / 2)'''</span>''''', and let <span class="texhtml" />''s''(''m'',''n'') = ''g''(''''''<i>T</i>,''n''''T'''''<b>) where T = 1.<br> </b> | ||
+ | |||
+ | a) Calculate <span class="texhtml">''G''(μ,ν)</span> the CSFT of <span class="texhtml">''g''(''x'',''y'')</span>. <br> b) Calculate <span class="texhtml">''S''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span> the DSFT of <span class="texhtml">''s''(''m'',''n'')</span>. <br> | ||
---- | ---- | ||
− | [[ | + | |
+ | [[ECE PhD Qualifying Exams|Back to ECE QE page]]: | ||
+ | |||
+ | [[Category:ECE]] [[Category:QE]] [[Category:CNSIP]] [[Category:Problem_solving]] [[Category:Image_processing]] |
Revision as of 15:58, 12 November 2014
Contents
ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)
Question 5, August 2013, Problem 1
- Problem 1 ,Problem 2
Solution 1:
a) Since
$ X(e^{j\mu},e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-j(m\mu+n\nu)} $
and
$ p_0(e^{jw}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-jnw} $,
we have:
p0(ej'w) = X(ejμ,ejw) | μ = 0
b) Similarly to a), we have:
p1(ej'w) = X(ejw,ejν) | ν = 0
c)
$ \sum_{n=-\infty}^{\infty} p_0(n) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n) = X(e^{j\mu}, e^{j\nu}) |_{\mu=0, \nu=0} $ which is the DC point of the image.
d) No, it can't provide sufficient information. From the expression in a) and b), we see that p0(ej'w)and <span class="texhtml" />p1(ejw) are only slices of the DSFT. It lost the information when μ and ν are not zero. A simple example would be: Let
$ x(m,n) = \left[ {\begin{array}{*{20}{c}} 1 ~ 2 \\ 3 ~ 4\\ \end{array}} \right] $, so
$ p_0(n) =[4~6], p_1(m) = [3 ~7]^T $. With the above the information of the projection, the original form of the 2D signal cannot be determined. For example, $ x(m,n) = \left[ {\begin{array}{*{20}{c}} 2 ~ 1 \\ 2 ~ 5\\ \end{array}} \right] $ gives the same projection.
Solution 2:
a) From the question,
$ P_0(e^{j\mu}) = \sum_{n=-\infty}^{\infty}p_0(n)e^{-jn\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}\cdot1 = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}e^{-jm\cdot0} = X(e^{j\mu},e^{j\cdot0}) = X(e^{j\mu},e^{j\nu})\vert_{\nu = 0} $
b) Similar to question a),
$ P_1(e^{j\nu}) = \sum_{m=-\infty}^{\infty}p_1(m)e^{-jm\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jm\nu}\cdot1 = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\cdot0}e^{-jm\nu} = X(e^{j\cdot0},e^{j\nu}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0} $
c)
$ \sum_{n = -\infty}^{\infty}p_0(n) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) =\sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) e^{-jn\cdot0}e^{-jm\cdot0} = X(e^{-jn\cdot0},e^{-jm\cdot0}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0, \nu = 0} $
d)No. P0 only represents the μ axis on X(ejμ,ejν). P1 only represents the ν axis on X(ejμ,ejν). It is not enough to represent X(ejμ,ejν).
Related Problem
1.Let g(x,y) = s'i'n'c(x / 2,y / 2), and let <span class="texhtml" />s(m,n) = g('T,n'T) where T = 1.
a) Calculate G(μ,ν) the CSFT of g(x,y).
b) Calculate S(ejμ,ejν) the DSFT of s(m,n).