Line 67: Line 67:
 
d) It exists. CIE XYZ is one example. However, XYZ has problems with its primaries, since, the primary colors are imaginary.  
 
d) It exists. CIE XYZ is one example. However, XYZ has problems with its primaries, since, the primary colors are imaginary.  
  
=== Related problem ===
+
== Solution 2: ==
  
In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength <span class="texhtml">λ</span>. Here the color matching allows for color to be subtracted from the reference color. At each wavelength <span class="texhtml">λ</span>, the matching color is given by  
+
----
 +
===Related Problem===
 +
1. In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength <span class="texhtml">λ</span>. Here the color matching allows for color to be subtracted from the reference color. At each wavelength <span class="texhtml">λ</span>, the matching color is given by  
  
 
<math>
 
<math>
Line 103: Line 105:
 
b) Calculate <math>(r_c, g_c, b_c) </math> the tristimulus values for the spectral distribution <math> I(\lambda) </math> using primaries <math> R, G, B </math> and  white point <math> (r_w, g_w, b_w) </math>.
 
b) Calculate <math>(r_c, g_c, b_c) </math> the tristimulus values for the spectral distribution <math> I(\lambda) </math> using primaries <math> R, G, B </math> and  white point <math> (r_w, g_w, b_w) </math>.
  
 
== Solution 2: ==
 
 
----
 
===Related Problem===
 
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]:
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]:

Revision as of 16:33, 11 November 2014


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

Question 5, August 2013, Problem 2

Problem 1 , Problem 2

Solution 1:

a) If the color matching functions fk(λ) has negative values, it will result in negative values in Fk. In this case, the color can not be reproduced by this device.

b) The CIE color matching functions are not always positive. r0(λ) takes negative values. This is the case because, to match some reference color that is too saturated, colors have to be subtracted from the R,G, and B primaries. This results in negative values in tristimulus values r, g, and b. So the color matching functions at the corresponding wavelength have negative values.

c)
$ \left[ {\begin{array}{*{20}{c}} F_1\\ F_2\\ F_3 \end{array}} \right] = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} f_1(\lambda)\\ f_1(\lambda)\\ f_1(\lambda) \end{array}} \right] I(\lambda)d\lambda = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} M \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M \left[ {\begin{array}{*{20}{c}} r\\ g\\ b \end{array}} \right] $

So that, [r,g,b]t = M − 1[F1,F2,F3].

d) It exists. CIE XYZ is one example. However, XYZ has problems with its primaries, since, the primary colors are imaginary.

Solution 2:


Related Problem

1. In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength λ. Here the color matching allows for color to be subtracted from the reference color. At each wavelength λ, the matching color is given by

$ \left[ {\begin{array}{*{20}{c}} R, G, B \end{array}} \right] \left[ {\begin{array}{*{20}{c}} r(\lambda)\\ g(\lambda)\\ b(\lambda) \end{array}} \right] $

where $ r_(\lambda) $, $ g_(\lambda) $, and $ b_(\lambda) $ are normalized to 1.

Further define the white point

$ W = \left[ {\begin{array}{*{20}{c}} R, G, B \end{array}} \right] \left[ {\begin{array}{*{20}{c}} r_w\\ g_w\\ b_w \end{array}} \right] $

Let $ I(\lambda) $ be the light reflected from a surface.

a) Calculate $ (r_e, g_e, b_e) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries $ R, G, B $ and an equal energy white point.

b) Calculate $ (r_c, g_c, b_c) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries $ R, G, B $ and white point $ (r_w, g_w, b_w) $.


Back to ECE QE page:

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood