Line 34: Line 34:
 
\end{array}} \right]
 
\end{array}} \right]
 
I(\lambda)d\lambda
 
I(\lambda)d\lambda
 +
 +
= {\begin{array}{*{20}{c}}
 +
\int_{-\infty}^{\infty}
 +
\end{array}}
 +
M
 +
\left[ {\begin{array}{*{20}{c}}
 +
r_0(\lambda)\\
 +
g_0(\lambda)\\
 +
b_0(\lambda)
 +
\end{array}} \right]
 +
I(\lambda)d\lambda
 +
 +
= M
 +
{\begin{array}{*{20}{c}}
 +
\int_{-\infty}^{\infty}
 +
\end{array}}
 +
\left[ {\begin{array}{*{20}{c}}
 +
r_0(\lambda)\\
 +
g_0(\lambda)\\
 +
b_0(\lambda)
 +
\end{array}} \right]
 +
I(\lambda)d\lambda
 +
 +
= M
 +
\left[ {\begin{array}{*{20}{c}}
 +
r\\
 +
g\\
 +
b
 +
\end{array}} \right]
 +
 
</math>
 
</math>

Revision as of 20:00, 10 November 2014


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

Question 5, August 2013, Part 2

part1, part 2


Solution 1:

a) If the color matching functions $ f_k(\lambda) $ has negative values, it will result in negative values in $ F_k $. In this case, the color can not be reproduced by this device.

b) The CIE color matching functions are not always positive. $ r_0(\lambda) $ takes negative values. This is the case because, to match some reference color that is too saturated, colors have to be subtracted from the $ R, G, $ and $ B $ primaries. This results in negative values in tristimulus values r, g, and b. So the color matching functions at the corresponding wavelength have negative values.

c)
$ \left[ {\begin{array}{*{20}{c}} F_1\\ F_2\\ F_3 \end{array}} \right] = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} f_1(\lambda)\\ f_1(\lambda)\\ f_1(\lambda) \end{array}} \right] I(\lambda)d\lambda = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} M \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M \left[ {\begin{array}{*{20}{c}} r\\ g\\ b \end{array}} \right] $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood