Line 21: Line 21:
 
'''Problem 2. ''' (50 pts)  
 
'''Problem 2. ''' (50 pts)  
  
Let&nbsp;'''<span class="texhtml">''r''<sub>0</sub>(λ), &nbsp;<span class="texhtml">''g''<sub>0</sub>(λ)</span></span>'''&nbsp;,&nbsp;<span style="line-height: 19.9200000762939px;">and&nbsp;</span>''b''<sub style="font-family: serif; line-height: 1.5em;">0</sub><span style="font-family: serif; line-height: 1.5em;">(λ)</span><span style="line-height: 19.9200000762939px;">&nbsp;be the CIE color matching functions for red, green, and blue primaries at 700 nm, 546.1 nm, and 435.8 nm, respectively, and let <math>[r, g, b]</math>&nbsp;be the corresponding CIE tristimulus values.&nbsp;</span>
+
Let&nbsp;'''<span class="texhtml">''r''<sub>0</sub>(λ), &nbsp;<span class="texhtml">''g''<sub>0</sub>(λ)</span></span>'''&nbsp;,&nbsp;<span style="line-height: 19.9200000762939px;">and&nbsp;</span>''b''<sub style="font-family: serif; line-height: 1.5em;">0</sub><span style="font-family: serif; line-height: 1.5em;">(λ)</span><span style="line-height: 19.9200000762939px;">&nbsp;be the CIE color matching functions for red, green, and blue primaries at 700 nm, 546.1 nm, and 435.8 nm, respectively, and let <span class="texhtml">[''r'',''g'',''b'']</span>&nbsp;be the corresponding CIE tristimulus values.&nbsp;</span>  
  
Furthermore, let&nbsp;<math>f_1(\lambda)</math>,&nbsp;<math>f_2(\lambda)</math>, and&nbsp;<math>f_3(\lambda)</math>&nbsp;be the spectral response functions for the three color outputs of a color camera. So for each pixel of the camera sensor, there is a 3-dimensional output vector given by&nbsp;<math>F=[F_1, F_2, F_3]^t</math>, where
+
Furthermore, let&nbsp;<span class="texhtml">''f''<sub>1</sub>(λ)</span>,&nbsp;<span class="texhtml">''f''<sub>2</sub>(λ)</span>, and&nbsp;<span class="texhtml">''f''<sub>3</sub>(λ)</span>&nbsp;be the spectral response functions for the three color outputs of a color camera. So for each pixel of the camera sensor, there is a 3-dimensional output vector given by&nbsp;<span class="texhtml">''F'' = [''F''<sub>1</sub>,''F''<sub>2</sub>,''F''<sub>3</sub>]<sup>''t''</sup></span>, where  
  
 +
<math>F_1 = \int_(-\infty)^(\infty)</math>
  
Let&nbsp;'''<span class="texhtml">''r''<sub>0</sub>(λ), &nbsp;<span class="texhtml">''g''<sub>0</sub>(λ)</span></span>'''&nbsp;, and&nbsp;<span class="texhtml">''b''<sub>0</sub>(λ),</span><br>
+
[[Category:ECE]]<span style="line-height: 1.5em;"> </span>[[Category:QE]]<span style="line-height: 1.5em;"> </span>[[Category:CNSIP]]<span style="line-height: 1.5em;"> </span>[[Category:Problem_solving]]<span style="line-height: 1.5em;"> </span>[[Category:Image_processing]]
 
+
[[Category:ECE]] [[Category:QE]] [[Category:CNSIP]] [[Category:Problem_solving]] [[Category:Image_processing]]
+

Revision as of 18:19, 10 November 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2013



Question

Problem 1. (50 pts)


Problem 2. (50 pts)

Let r0(λ),  g0(λ) , and b0(λ) be the CIE color matching functions for red, green, and blue primaries at 700 nm, 546.1 nm, and 435.8 nm, respectively, and let [r,g,b] be the corresponding CIE tristimulus values. 

Furthermore, let f1(λ)f2(λ), and f3(λ) be the spectral response functions for the three color outputs of a color camera. So for each pixel of the camera sensor, there is a 3-dimensional output vector given by F = [F1,F2,F3]t, where

$ F_1 = \int_(-\infty)^(\infty) $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009