Line 32: | Line 32: | ||
=Solution 1= | =Solution 1= | ||
− | <math> | + | <math>E(X_n)=\frac{n-1}{n}E(Y)+\frac{1}{n}E(Z)</math> |
− | + | Where | |
− | <math> | + | <math>Y \sim N(\frac{n-1}{n}\sigma, \sigma^2)</math> |
− | + | <math>Z \sim EXP(\sigma)</math> | |
− | + | From the property of Normal distribution and exponential distribution, | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <math>E(Y)=\frac{n-1}{n}\sigma</math> | |
− | <math>E( | + | <math>E(Z)=\frac{1}{\sigma}</math>. |
− | + | Therefore, | |
− | <math>\lim_{x\to \infty} | + | <math>\lim_{x\to \infty}E(X_n)=\lim_{x\to \infty}(\frac{n-1}{n})^2\sigma+\frac{1}{n}\frac{1}{\sigma}=\sigma</math>. |
− | + | Also, | |
− | <math>\lim_{x\to \infty} | + | <math>\lim_{x\to \infty}E(X_{n+m})=\lim_{x\to \infty}(\frac{n+m-1}{n+m})^2\sigma+\frac{1}{n+m}\frac{1}{\sigma}=\sigma</math>. |
− | + | Thus, | |
− | <math>E( | + | <math>\lim_{x\to \infty}E(X_n-X_{n+m})=\lim_{x\to \infty}E(X_n)-\lim_{x\to \infty}E(X_{n+m})=0</math>, |
− | + | <math>\lim_{x\to \infty}E(X_{n+m}-X_n)=\lim_{x\to \infty}E(X_{n+m})-\lim_{x\to \infty}E(X_n)=0</math>. | |
− | + | So we have | |
− | <math>\ | + | <math>\lim_{x\to \infty}E(|X_{n+m}-X_n|)=0</math> |
− | + | ||
− | + | ||
− | + | ||
− | = | + | |
− | + | ||
− | + | for every m. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | From the Cauchy criterion for mean-square convergence, this sequence converges int he mean-square sense | |
---- | ---- |
Revision as of 12:50, 4 November 2014
Communication, Networking, Signal and Image Processing (CS)
Question 1: Probability and Random Processes
August 2013
Part 4
Consider a sequence of independent random variables $ X_1,X_2,... $, where $ X_n $ has pdf
$ \begin{align}f_n(x)=&(1-\frac{1}{n})\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{1}{2\sigma^2}(x-\frac{n-1}{n}\sigma)^2]\\ &+\frac{1}{n}\sigma exp(-\sigma x)u(x)\end{align} $.
Does this sequence converge in the mean-square sense? Hint: Use the Cauchy criterion for mean-square convergence, which states that a sequence of random variables $ X_1,X_2,... $ converges in mean-square if and only if $ E[|X_n-X_{n+m}|] \to 0 $ as $ n \to \infty $, for every $ m>0 $.
Solution 1
$ E(X_n)=\frac{n-1}{n}E(Y)+\frac{1}{n}E(Z) $
Where
$ Y \sim N(\frac{n-1}{n}\sigma, \sigma^2) $
$ Z \sim EXP(\sigma) $
From the property of Normal distribution and exponential distribution,
$ E(Y)=\frac{n-1}{n}\sigma $
$ E(Z)=\frac{1}{\sigma} $.
Therefore,
$ \lim_{x\to \infty}E(X_n)=\lim_{x\to \infty}(\frac{n-1}{n})^2\sigma+\frac{1}{n}\frac{1}{\sigma}=\sigma $.
Also,
$ \lim_{x\to \infty}E(X_{n+m})=\lim_{x\to \infty}(\frac{n+m-1}{n+m})^2\sigma+\frac{1}{n+m}\frac{1}{\sigma}=\sigma $.
Thus,
$ \lim_{x\to \infty}E(X_n-X_{n+m})=\lim_{x\to \infty}E(X_n)-\lim_{x\to \infty}E(X_{n+m})=0 $,
$ \lim_{x\to \infty}E(X_{n+m}-X_n)=\lim_{x\to \infty}E(X_{n+m})-\lim_{x\to \infty}E(X_n)=0 $.
So we have
$ \lim_{x\to \infty}E(|X_{n+m}-X_n|)=0 $
for every m.
From the Cauchy criterion for mean-square convergence, this sequence converges int he mean-square sense
Solution 2
$ \begin{align} E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\ &=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\ &=-(xe^{-lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\ &=\frac{1}{x} \end{align} $
$ \begin{align} E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\ &=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\ &=-(x^2e^{-lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\ &=\frac{2}{x^2} \end{align} $
Therefore,
$ Var(X)=E(X^2)-E(X)^2=\frac{1}{\lambda^2} $
Critique on Solution 2:
Solution 2 is correct. In addition, calculating $ E(X) $ first is better since the result can be used in calculating $ E(X^2) $.