(New page: Category:ECE Category:QE Category:CNSIP Category:problem solving Category:random variables Category:probability <center> <font size= 4> [[ECE_PhD_Qualifying_Exams...) |
|||
Line 23: | Line 23: | ||
---- | ---- | ||
=Part 4= | =Part 4= | ||
− | + | Consider a sequence of independent random variables <math>X_1,X_2,...</math>, where <math>X_n</math> has pdf | |
+ | |||
+ | <math>\begin{align}f_n(x)=&(1-\frac{1}{n})\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{1}{2\sigma^2}(x-\frac{n-1}{n}\sigma)^2]\\ | ||
+ | &+\frac{1}{n}\sigma exp(-\sigma x)u(x)\end{align}</math>. | ||
+ | |||
+ | Does this sequence converge in the mean-square sense? ''Hint:'' Use the Cauchy criterion for mean-square convergence, which states that a sequence of random variables <math>X_1,X_2,...</math> converges in mean-square if and only if <math>E[|X_n-X_{n+m}|] \to 0</math> as <math>n \to \infty</math>, for every <math>m>0</math>. | ||
---- | ---- | ||
=Solution 1= | =Solution 1= |
Revision as of 06:48, 4 November 2014
Communication, Networking, Signal and Image Processing (CS)
Question 1: Probability and Random Processes
August 2013
Part 4
Consider a sequence of independent random variables $ X_1,X_2,... $, where $ X_n $ has pdf
$ \begin{align}f_n(x)=&(1-\frac{1}{n})\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{1}{2\sigma^2}(x-\frac{n-1}{n}\sigma)^2]\\ &+\frac{1}{n}\sigma exp(-\sigma x)u(x)\end{align} $.
Does this sequence converge in the mean-square sense? Hint: Use the Cauchy criterion for mean-square convergence, which states that a sequence of random variables $ X_1,X_2,... $ converges in mean-square if and only if $ E[|X_n-X_{n+m}|] \to 0 $ as $ n \to \infty $, for every $ m>0 $.
Solution 1
$ Var(X)=E(X^2)-E(X)^2 $
First,
$ E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx $
Since
$ \begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\ =\int -x^2 de^{-\lambda x}\\ =-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x} \end{array} $,
We have
$ E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty $
By L'Hospital's rule, we have
$ \lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0 $
and
$ \lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0 $.
Therefore,
$ E(X) = \frac{2}{\lambda^2} $.
Then we take a look at $ E(X) $.
$ E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx $
$ \begin{array}{l} \int x\lambda{e}^{-\lambda{x}}dx\\ =\int xde^(\lambda x)\\ =-xe^{-\lambda x}+\int e^{\lambda x}dx\\ =-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\ \end{array} $
Similar to the calculation of $ E(X^2) $,
$ E(X)=\frac{1}{\lambda} $.
Therefore,
$ Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2} $.
Solution 2
$ \begin{align} E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\ &=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\ &=-(xe^{-lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\ &=\frac{1}{x} \end{align} $
$ \begin{align} E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\ &=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\ &=-(x^2e^{-lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\ &=\frac{2}{x^2} \end{align} $
Therefore,
$ Var(X)=E(X^2)-E(X)^2=\frac{1}{\lambda^2} $
Critique on Solution 2:
Solution 2 is correct. In addition, calculating $ E(X) $ first is better since the result can be used in calculating $ E(X^2) $.