Line 27: Line 27:
 
=Solution 1=
 
=Solution 1=
  
Suppose
+
<math>Var(X)=E(X^2)-E(X)^2</math>
  
<math>A=\left(\begin{array}{cc}
+
First,
a & b\\
+
c & d
+
\end{array} \right)</math>.
+
  
Then the new 2-D random vector can be expressed as
+
<math>E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx</math>
  
<math>Y=\left(\begin{array}{c}Y_1 \\ Y_2\end{array} \right)=A\left(\begin{array}{c}X_i \\ X_j\end{array} \right)=\left(\begin{array}{c}aX_i+bX_j \\ cX_i+dX_j\end{array} \right)</math>
+
Since
  
 +
<math>\begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\
 +
=\int -x^2 de^{-\lambda x}\\
 +
=-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\
 +
=-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\
 +
=-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}
 +
\end{array}</math>,
  
Therefore,
+
We have
  
<math>\begin{array}{l}Cov(Y_1,Y_2)=E[(aX_i+bX_j-E(aX_i+bX_j))(cX_i+dX_j-E(cX_i+dX_j))] \\
+
<math>E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty</math>
=E[(aX_i+bX_j-aE(X_i)-bE(X_j))(cX_i+dX_j-cE(X_i)-dE(X_j))] \\
+
=E[acX_i^2+adX_iX_j-acX_iE(X_i)-adX_iE(X_j)+bcX_iX_j+bdX_j^2-bcX_jE(X_i)\\
+
-bdX_jE(X_j)-acX_iE(X_i)-adX_jE(X_i)+acE(X_i)^2+adE(X_i)E(X_j)\\
+
-bcX_iE(X_j)-bdX_jE(X_j)+bcE(X_i)E(X_j)+bdE(X_i)^2]\\
+
=E(ac(X_i-E(X_i))^2+(ad+bc)(X_i-E(X_i)(X_j-E(X_j))+bd(X_j-E(X_j))^2]\\
+
=(ac)Cov(X_i,X_i)+(ad+bc)Cov(X-i,X_j)+(bd)Cov(X_j,X_j)\\
+
=ac\sigma^2+(ad+bc)\rho\sigma^2+bd\sigma^2
+
\end{array}</math>
+
  
Let the above formula equal to 0 and <math>a=b=d=1</math>, we get <math>c=-1</math>.
+
By L'Hospital's rule, we have
 +
 
 +
<math>\lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0</math>
 +
 
 +
and
 +
 
 +
<math>\lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0</math>.
 +
 
 +
Therefore,
 +
 
 +
<math>E(X) = \frac{2}{\lambda^2}</math>.
 +
 
 +
Then we take a look at <math>E(X)</math>.
 +
 
 +
<math>E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx</math>
 +
 
 +
<math>\begin{array}{l}
 +
\int x\lambda{e}^{-\lambda{x}}dx\\
 +
=\int xde^(\lambda x)\\
 +
=-xe^{-\lambda x}+\int e^{\lambda x}dx\\
 +
=-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\
 +
\end{array}</math>
  
Therefore, a solution is
+
Similar to the calculation of <math>E(X^2)</math>,
  
<math>A=\left(\begin{array}{cc}
+
<math>E(X)=\frac{1}{\lambda}</math>.
1 & 1\\
+
-1 & 1
+
\end{array} \right)</math>.
+
  
 +
Therefore,
  
 +
<math>Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2}</math>.
  
 
----
 
----

Revision as of 06:24, 4 November 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2013



Part 3

Let $ X $ be an exponential random variable with parameter $ \lambda $, so that $ f_X(x)=\lambda{exp}(-\lambda{x})u(x) $. Find the variance of $ X $. You must show all of your work.


Solution 1

$ Var(X)=E(X^2)-E(X)^2 $

First,

$ E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx $

Since

$ \begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\ =\int -x^2 de^{-\lambda x}\\ =-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x} \end{array} $,

We have

$ E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty $

By L'Hospital's rule, we have

$ \lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0 $

and

$ \lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0 $.

Therefore,

$ E(X) = \frac{2}{\lambda^2} $.

Then we take a look at $ E(X) $.

$ E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx $

$ \begin{array}{l} \int x\lambda{e}^{-\lambda{x}}dx\\ =\int xde^(\lambda x)\\ =-xe^{-\lambda x}+\int e^{\lambda x}dx\\ =-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\ \end{array} $

Similar to the calculation of $ E(X^2) $,

$ E(X)=\frac{1}{\lambda} $.

Therefore,

$ Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2} $.


Solution 2

Assume

$ Y=\left(\begin{array}{c}Y_i \\ Y_j\end{array} \right)=A\left(\begin{array}{c}X_i \\ X_j\end{array} \right)=\left(\begin{array}{c}a_{11}X_i+a_{12}X_j \\ a_{21}X_i+a_{22}X_j\end{array} \right) $.

Then

$ \begin{array}{l}E(Y_iY_j)=E[(a_{11}X_i+a_{12}X_j)(a_{21}X_i+a_{22}X_j)]\\ =a_{11}a_{21}\sigma^2+a_{12}a_{22}\sigma^2+(a_{11}a_{21}+a_{22}a_{11})E(X_iX_j) \end{array} $

For $ |i-j|\geq1 $, $ E(X_i,X_j)=0 $. Therefore, $ a_{11}a_{21}+a_{12}a_{22}=0 $.

One solution can be

$ A=\left(\begin{array}{cc} 1 & -1\\ 1 & 1 \end{array} \right) $.


Critique on Solution 2:

1. $ E(Y_iY_j)=0 $ is not the condition for the two random variables to be independent.

2. "For $ |i-j|\geq1 $, $ E(X_i,X_j)=0 $" is not supported by the given conditions.


Back to QE CS question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett