(New page: Category:ECE438Fall2014Boutin Category:ECE438 Category:ECE Category:fourier transform Category:homework =Homework 7 Solution, [[2014_Fall_ECE_438_Bout...) |
|||
Line 11: | Line 11: | ||
<math>x[n]= \left( \frac{1}{2} \right)^n u[-n] </math> | <math>x[n]= \left( \frac{1}{2} \right)^n u[-n] </math> | ||
+ | |||
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} = \sum_{n=-\infty}^{+\infty} (\frac{1}{2})^n u[-n] z^{-n} = \sum_{n=-\infty}^{+\infty} (2z)^{-n} u[-n]</math> | ||
+ | |||
+ | Let k=-n, then | ||
+ | |||
+ | <math>X(z) = \sum_{k=-\infty}^{+\infty} (2z)^k u[k]</math> | ||
+ | |||
+ | <math> | ||
+ | X(z) = \left\{ | ||
+ | \begin{array}{l l} | ||
+ | (\frac{3}{z})^3 &, if \quad |z| < \frac{1}{2}\\ | ||
+ | \text{diverges} &, \quad \text{otherwise} | ||
+ | \end{array} \right. | ||
+ | </math> | ||
+ | |||
+ | <math> \mathcal{F}(x[n]r^{-n}) = X(3e^{jw}) = \mathcal{X}(w) = \frac{\frac{3}{3e^{jw}}}{1-e^{jw}} </math> | ||
==Questions 2== | ==Questions 2== |
Revision as of 20:01, 2 November 2014
Contents
Homework 7 Solution, ECE438 Fall 2014, Prof. Boutin
Questions 1
Compute the z-transform of the signal
$ x[n]= \left( \frac{1}{2} \right)^n u[-n] $
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} = \sum_{n=-\infty}^{+\infty} (\frac{1}{2})^n u[-n] z^{-n} = \sum_{n=-\infty}^{+\infty} (2z)^{-n} u[-n] $
Let k=-n, then
$ X(z) = \sum_{k=-\infty}^{+\infty} (2z)^k u[k] $
$ X(z) = \left\{ \begin{array}{l l} (\frac{3}{z})^3 &, if \quad |z| < \frac{1}{2}\\ \text{diverges} &, \quad \text{otherwise} \end{array} \right. $
$ \mathcal{F}(x[n]r^{-n}) = X(3e^{jw}) = \mathcal{X}(w) = \frac{\frac{3}{3e^{jw}}}{1-e^{jw}} $
Questions 2
Compute the z-transform of the signal
$ x[n]= 5^n u[n-3] \ $
Questions 3
Compute the z-transform of the signal
$ x[n]= 5^{-|n|} \ $
Question 4
Compute the z-transform of the signal
$ x[n]= 2^{n}u[n]+ 3^{n}u[-n+1] \ $
Question 4
Compute the inverse z-transform of
$ X(z)=\frac{1}{1+z}, \text{ ROC } |z|<1 $
Question 5
Compute the inverse z-transform of
$ X(z)=\frac{1}{1+2 z}, \text{ ROC } |z|> \frac{1}{2} $
Question 6
Compute the inverse z-transform of
$ X(z)=\frac{1}{1+2 z}, \text{ ROC } |z|< \frac{1}{2} $
Question 7
Compute the inverse z-transform of
$ X(z)=\frac{1}{(1+ z)(3-z)}, \text{ ROC } |z|<1 $
Question 8
Compute the inverse z-transform of
$ X(z)=\frac{1}{(1+ z)(3-z)}, \text{ ROC } |z|>3 $
Question 9
Compute the inverse z-transform of
$ X(z)=\frac{1}{(1+ z)(3-z)}, \text{ ROC } 1< |z|<3 $