m (add background info and fix intro)
(add to derivation)
Line 33: Line 33:
 
Sampling above Nyquist frequency guarantees a bandlimited sampled CT signal's reconstruction. **add source**
 
Sampling above Nyquist frequency guarantees a bandlimited sampled CT signal's reconstruction. **add source**
 
<br>
 
<br>
Define Nyquist Sampling rate as <math> {f}_{s} = 2{f}_{M} </math>
+
Define Nyquist Sampling rate as <math> {f}_{Nyquist} = 2{f}_{M} </math>
 
<br>
 
<br>
 
<math>{f}_{M} </math> is max frequency of CT signal
 
<math>{f}_{M} </math> is max frequency of CT signal
Line 59: Line 59:
 
<math>{x}_{u}[n] = {x}_{c}(n{T}_{u})</math>, a signal sampled at a HIGHER sampling frequency than <math> {x}_{1}[n]</math>,
 
<math>{x}_{u}[n] = {x}_{c}(n{T}_{u})</math>, a signal sampled at a HIGHER sampling frequency than <math> {x}_{1}[n]</math>,
 
without having to fully reconstruct <math> {x}_{c}(t) </math>  
 
without having to fully reconstruct <math> {x}_{c}(t) </math>  
 
  
  
Line 65: Line 64:
 
----
 
----
 
== Derivation ==
 
== Derivation ==
 +
We want <math> {f}_{u} > {f}_{Nyquist} </math>. In this situation, this means <math> {f}_{u} > {f}_{1} </math>.
 +
<br>
 +
Therefore, we want <math>{T}_{u} < {T}_{1}</math>. (i.e. <math> {x}_{u}[n]</math> is sampled at a higher frequency than <math> {x}_{1}[n]</math>)
 +
<br> In other words, <br>
 +
<math> {T}_{u} =  {\frac{{T}_{1}}{D}} </math> for some integer D.
 +
<br>
 +
<br>
 +
<math> {x}_{1}[n] = x_{c}(n{T}_{1})</math>
 +
<br>
 +
<math>{x}_{u}[n] = {x}_{c}(n{T}_{u})</math>
 +
<br>
  
 +
<math>{x}_{u}[n] ={x}_{1}[n/D] = {x}_{c}(n{T}_{1}({T}_{u}/{T}_{1})) = {x}_{c}(n{T}_{u}) </math>if n/D is an integer
 +
<br>
 +
<math>{x}_{u}[n] = 0 </math> else.
 +
<br><br>
 +
In frequency domain: <br>
 +
<math>{X}_{u}({\omega}) = {\sum_{n = -{\infty}}^{\infty} {x}_{u}[n]e^{-j{\omega}n}}</math>
 +
<br>
 +
<math>{X}_{u}({\omega}) = {\sum_{n = -{\infty}}^{\infty} {x}_{1}[n/D]e^{-j{\omega}n}}</math>
 +
<br> let n=mD <br>
 +
<math>{X}_{u}({\omega}) = {\sum_{m = -{\infty}}^{\infty} {x}_{1}[m]e^{-j{\omega}mD}}</math>
 +
<br>
 +
<math>{X}_{u}({\omega}) ={X}_{1}(D{\omega}) </math> notice this is a rescaled version of <math> {X}_{1} </math>
  
 +
<br><br>
 +
In order to get <math>{x}_{int}(n) </math>, the reconstructed signal, we need to LPF <math> {X}_{u}({\omega}) </math>.
 +
<br>
 +
<math> {x}_{int}(n) = {x}_{u} * h(n) </math>
 +
<br>
 +
<math> h(n) = sinc(n/D) </math>
 +
----
 +
 +
 +
----
 +
 +
----
 +
 +
 +
----
 +
== Conclusion ==
 
----
 
----

Revision as of 14:47, 14 October 2014

Frequency Domain View of Upsampling

Why Interpolator needs a LPF after Upsampling


A slecture by ECE student Chloe Kauffman

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


Outline

  1. Background
  2. Introduction
  3. Derivation
  4. Example
  5. Conclusion


Background

$ {f}_{s} $ = sampling frequency (number of samples/second) Hz
$ {T}_{s} $ = sampling period (number of seconds/sample) seconds
$ {f}_{s} = {\frac{1}{{T}_{s}}} $

Sampling above Nyquist frequency guarantees a bandlimited sampled CT signal's reconstruction. **add source**
Define Nyquist Sampling rate as $ {f}_{Nyquist} = 2{f}_{M} $
$ {f}_{M} $ is max frequency of CT signal




Introduction

Sampling at frequencies much larger than Nyquist requires a filter for reconstruction with a less sharp cutoff. A digital LPF can be used to then obtain the reconstructed signal.

**add picture & source**



Assume $ {x}_{c}(t) $ is a bandlimited CT signal, $ {x}_{1}[n] $ is a DT sampled signal of $ {x}_{c}(t) $ with sampling period $ {T}_{1} $

This leads to the question, can you use

$ {x}_{1}[n] = x_{c}(n{T}_{1}) $

to obtain

$ {x}_{u}[n] = {x}_{c}(n{T}_{u}) $, a signal sampled at a HIGHER sampling frequency than $ {x}_{1}[n] $, without having to fully reconstruct $ {x}_{c}(t) $




Derivation

We want $ {f}_{u} > {f}_{Nyquist} $. In this situation, this means $ {f}_{u} > {f}_{1} $.
Therefore, we want $ {T}_{u} < {T}_{1} $. (i.e. $ {x}_{u}[n] $ is sampled at a higher frequency than $ {x}_{1}[n] $)
In other words,
$ {T}_{u} = {\frac{{T}_{1}}{D}} $ for some integer D.

$ {x}_{1}[n] = x_{c}(n{T}_{1}) $
$ {x}_{u}[n] = {x}_{c}(n{T}_{u}) $

$ {x}_{u}[n] ={x}_{1}[n/D] = {x}_{c}(n{T}_{1}({T}_{u}/{T}_{1})) = {x}_{c}(n{T}_{u}) $if n/D is an integer
$ {x}_{u}[n] = 0 $ else.

In frequency domain:
$ {X}_{u}({\omega}) = {\sum_{n = -{\infty}}^{\infty} {x}_{u}[n]e^{-j{\omega}n}} $
$ {X}_{u}({\omega}) = {\sum_{n = -{\infty}}^{\infty} {x}_{1}[n/D]e^{-j{\omega}n}} $
let n=mD
$ {X}_{u}({\omega}) = {\sum_{m = -{\infty}}^{\infty} {x}_{1}[m]e^{-j{\omega}mD}} $
$ {X}_{u}({\omega}) ={X}_{1}(D{\omega}) $ notice this is a rescaled version of $ {X}_{1} $



In order to get $ {x}_{int}(n) $, the reconstructed signal, we need to LPF $ {X}_{u}({\omega}) $.
$ {x}_{int}(n) = {x}_{u} * h(n) $
$ h(n) = sinc(n/D) $







Conclusion


Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva