Line 20: Line 20:
 
Image1<br><br>
 
Image1<br><br>
 
Now let's describe this process in the frequency domain.
 
Now let's describe this process in the frequency domain.
 +
 
==Derivation==
 
==Derivation==
 
First we'll take the Discrete Time Fourier Transform of the original signal and the downsampled version of it.<br>
 
First we'll take the Discrete Time Fourier Transform of the original signal and the downsampled version of it.<br>
 +
 
<math>\begin{align}
 
<math>\begin{align}
\mathcal{X}(\omega) &= \mathcal{F }\left \{ x_2[n] \right \} = \mathcal{F }\left \{ x_1[Dn] \right \}\\
+
\mathcal{X}_2(\omega) &= \mathcal{F }\left \{ x_2[n] \right \} = \mathcal{F }\left \{ x_1[Dn] \right \}\\
&= \sum_{n=-\infty}^\infty x_1[Dn]e^{-j2\omega f}
+
&= \sum_{n=-\infty}^\infty x_1[Dn]e^{-j\omega n}
 +
\end{align}</math>
 +
<br>make the substitution of <math> n=\frac{m}{D} </math><br>
 +
 
 +
<math>\begin{align}
 +
\mathcal{X}_2(\omega) &= \sum_{m=-\infty}^\infty x_1[m]e^{-j\omega \frac{m}{D}}
 +
\end{align}</math>
 +
 
 +
<br>Downsampled signal will only be nonzero for m equal to multiples of D so:<br>
 +
 
 +
<math>\begin{align}
 +
\mathcal{X}_2(\omega) &= \sum_{m=-\infty}^\infty s_d[m]x_1[m]e^{-j\omega \frac{m}{D}} \text{ where}\\
 +
s_d[m]
 
\end{align}</math>
 
\end{align}</math>
<br>make the substitution of <math>n=\frac{m}{\D}</math> 
 
 
==Example==
 
==Example==
 
==Conclusion==
 
==Conclusion==
  
 
----
 
----

Revision as of 14:00, 9 October 2014


Downsampling in the Frequency Domain

A slecture by ECE student John S.

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


Introduction

Remember for time domain, Downsampling is defined as:

Image1

Now let's describe this process in the frequency domain.

Derivation

First we'll take the Discrete Time Fourier Transform of the original signal and the downsampled version of it.

$ \begin{align} \mathcal{X}_2(\omega) &= \mathcal{F }\left \{ x_2[n] \right \} = \mathcal{F }\left \{ x_1[Dn] \right \}\\ &= \sum_{n=-\infty}^\infty x_1[Dn]e^{-j\omega n} \end{align} $
make the substitution of $ n=\frac{m}{D} $

$ \begin{align} \mathcal{X}_2(\omega) &= \sum_{m=-\infty}^\infty x_1[m]e^{-j\omega \frac{m}{D}} \end{align} $


Downsampled signal will only be nonzero for m equal to multiples of D so:

$ \begin{align} \mathcal{X}_2(\omega) &= \sum_{m=-\infty}^\infty s_d[m]x_1[m]e^{-j\omega \frac{m}{D}} \text{ where}\\ s_d[m] \end{align} $

Example

Conclusion


Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal